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Abstract—  

There are two broad categories of approaches used for 

checkpointing: application-transparent and application-

assisted. Typically, application-assisted approaches provide a 

more flexible and light-weight mechanism but require changes 

to the application. Although most applications run well under 

virtualization (e.g. Xen which is being adopted widely), the 

addition of application-assisted checkpointing - used for high 

availability - causes performance problems. This is due to the 

overhead of key system calls used by the checkpointing 

techniques under virtualization. 

To overcome this, we introduce the notion of hypervisor-

assisted application checkpointing with no changes to the guest 

operating system.  We present the design and a Xen-based 

implementation of our family of application checkpointing 

techniques. Our experiments show performance improvements 

of 4x to 13x in the primitives used for supporting high 

availability compared to purely user-level approaches. 

Keywords - virtualization; hypervisor; Xen; checkpointing; 

high-availabiliy 

I.  INTRODUCTION 

Checkpoint/restart is one of the standard mechanisms for 
achieving high availability in long running computing 
systems  [1]. The state of the application and/or the OS is 
either stored locally or carried over the network to a backup 
machine for future recovery. There has been extensive 
research in the area of checkpointing in the last two decades 
 [2] [3] [4] [5] [6] [7] [8] [9]. Libckp  [2], libckpt  [3], Condor 
checkpointing  [5], are some of the initial systems that 
incorporated libraries for automated checkpointing.  

Research literature classifies checkpointing approaches 
into two main categories – (a) application-transparent 
checkpoints  [1] [2] [3], where the application does not need to 
be modified or be aware of the checkpoints happening, and 
(b) application-assisted checkpoints  [10] [11], where the 
application defines the data to be checkpointed and drives 
the checkpoints.  The application-transparent approaches 
have the benefit of not requiring changes to the application. 
On the other hand, they have to checkpoint all the 
application state and incur higher performance overheads. 
Although the application-assisted approaches require 
changes to the application, they are usually more efficient 
since they can accurately determine the checkpoint size and 
frequency based on application demands. Incremental 
checkpoints  [3] [12] are one way to reduce checkpoint 
overheads. As the name suggests, instead of whole memory 
checkpoints, only differences from the previous state are 
checkpointed. Both the application-transparent and 

application-assisted approaches can benefit from the use of 
incremental checkpoints. 

Virtualization technology is being widely adopted as a 
means for server consolidation. Most application servers 
deployed under virtualized environments need high 
availability, so that they can provide 24×7 service to their 
geographically diverse set of clients. The work on replica 
coordination techniques by Bressoud  [13] was one of the 
first to propose high availability under virtualization.  
Virtualization platforms like KVM  [14], VMware vSphere 
 [15] and Xen  [16], provide mechanisms like snapshots and 
live migration  [17], for achieving high availability under 
failure conditions. The work by Wang et al.  [18] proposes 
checkpointing of virtual machines using a special-purpose 
checkpointing VM. Remus  [19] and Kemari  [20] are 
examples of application-transparent incremental 
checkpointing frameworks in the Xen environment. Both 
techniques periodically copy the disk and memory state of 
the virtualized OS and the applications to a backup system.  
Since each checkpoint copies the entire changed state of the 
virtual machine, the data processing and migration overheads 
can be significantly high, especially for applications that 
need high performance and have a limited data set that they 
need for recovery. Our work targets such applications and 
focuses on application-assisted incremental checkpointing 
techniques. 

On the face of it, application-assisted checkpoints can run 
unchanged on virtualized platforms. While this is 
functionally true, we have observed that there is a significant 
performance penalty arising from the inherent nature of 
virtualization implementation. Understanding and mitigating 
this issue is the main focus of our effort. Incremental 
checkpoints are usually implemented using a page-fault 
based mechanism. Pages dirtied since the last checkpoint are 
tracked by making them read-only and having the 
application/OS fault when data is written to those pages  [21]. 
Usually in native environments, implementation of 
incremental checkpoints is very efficient. However, in 
virtualized environments, due to the overheads related to 
trapping multiple times to the hypervisor, the primitives used 
to implement the page fault mechanism become very 
expensive. (This is explained later in Section  II.D.) Our work 
in this paper is targeted to address this overhead so that these 
primitives can be implemented efficiently under 
virtualization, thereby enabling application-assisted 
checkpointing techniques to retain their high performance.  

In this paper, we introduce a new model: hypervisor-
assisted application checkpointing. In our model, the 
hypervisor of the virtualization platform provides efficient 
primitives that assist applications to track page fault behavior. 
We also introduce a novel mechanism for applications to use 
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these hypervisor-provided primitives. Rather than the usual 
method of only allowing a guest operating system to use 
hypervisor services, we enable an application running inside 
the guest OS to invoke these primitives in the hypervisor 
directly and securely, without any changes to the guest 
operating system. This allows for better code maintenance 
and easier deployment, since the underlying operating 
system in which the checkpointed application is deployed 
does not need to be changed to use our technique. Bypassing 
the operating system for specific features the hypervisor 
provides, and doing so securely is novel even from the 
virtualization standpoint and is motivated by application-
assisted checkpointing.  

We present a family of techniques that use our 
hypervisor-assistance paradigm and describe their 
implementation in the Xen virtualization platform. We have 
conducted detailed experiments including microbenchmark 
studies and performance results for basic data structure 
operations used in standard application transactions. Our 
experimental results demonstrate a significant performance 
improvement: specifically, a 4x-13x boost in performance in 
the page fault primitives that lie at the heart of application 
checkpointing techniques.  

The rest of the paper is organized as follows. Section  II 
introduces some basic concepts in application checkpointing 
and virtualization and motivates the performance problem of 
checkpointing under virtualization. In Section  III, we 
introduce our model of hypervisor-assisted checkpointing, its 
key features, and implementation challenges. Section  IV 
discusses our family of checkpointing approaches. Section  V 
explores the performance of our approaches using 
microbenchmarks. In Section  VI, we use a workload-based 
evaluation using data structure operations to study our 
techniques and conclude in Section  VII. 

II. CHECKPOINTING AND VIRTUALIZATION 

In this section, we provide a brief background of 
checkpointing and virtualization and outline the source of 
performance degradation of checkpointing under 
virtualization.  

A. Application-Assisted Checkpointing 

In application-assisted checkpointing techniques, the 
application usually defines memory areas that need to be 
checkpointed for recovery. We call these segments of the 
memory as the critical data area (CDA). At the end of a 
checkpoint cycle, the CDA is saved to disk or synchronized 
to the backup CDA in an atomic operation. In application-
assisted checkpointing, it is the application’s responsibility to 
determine the checkpoint cycle, i.e., the start and end of the 
checkpoint. Usually, an application transactionalizes certain 
operations or groups of operations on the critical data area by 
invoking checkpoint begin and end calls at transaction 
boundaries. This results in either all or none of the changes 
within a transaction being carried over to the backup.  

Figure 1 shows how high availability is achieved by 
checkpointing data structures at transaction boundaries. In 
this example, each list operation in the figure is treated as a 
transaction by the application. At the completion of the list 

operation, checkpoint cycle is terminated to copy over the 
modified pages to the backup.  

 
Figure 1: Checkpoint and recovery 

 
Application-assisted checkpointing approaches usually 

define a simple API which provides the application the 
functionality to declare a critical data area (CDA) and define 
the start/end of a transaction or checkpoint cycle. Existing 
code can be modified to use these primitives to define 
checkpointed data and also the transaction boundaries. 

B. Incremental Checkpointing 

Incremental checkpoint minimizes checkpointing 
overhead by synchronizing just the pages that were modified 
after the last checkpoint. A page-fault based mechanism is 
typically used to determine the modified (dirty) pages 
 [3] [12] [21].  At the beginning of a checkpoint cycle, all 
pages that are part of the CDA are write-protected by using a 
memory protection command (e.g. the mprotect system call). 
When the application tries to modify a write-protected page, 
a protection violation signal is generated. This signal can be 
trapped by a signal handler. The signal handler adds the 
address of the faulting page to the list of changed pages and 
removes the write protection from the page (e.g. by another 
call to mprotect) so that the application can proceed with the 
write. At the end of the checkpoint cycle, the list of changed 
pages contains all the pages that were modified in this 
checkpoint cycle. The program can then be paused 
momentarily to save the contents of the changed pages.  We 
call this technique as page-tracking (PT) based, since it 
tracks changes at the page-level granularity.   

Existing page-tracking techniques can use an optimization of 

difference computation to detect the changes within the page 

and then save only the modified words to the backup. This 

trades compute overhead for data reduction.  

C. Platform Virtualization with Xen 

Server consolidation to reduce cost, space and power has 
been a driving force behind the success of platform 
virtualization.  Virtualization allows multiple servers to run 
on the same physical hardware without interfering with each 
other.  A thin layer called hypervisor or Virtual Machine 
Monitor (VMM) runs on top of the hardware and provides 
virtual hardware interfaces to the VMs.  
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In the case of Xen (see Figure 2), the hypervisor (VMM) 
runs at the highest privilege level and controls the hardware. 
Virtual machine instances are also called domains in Xen. A 
privileged domain called Dom0 and other non-privileged 
guest domains called DomU run above the hypervisor like an 
application runs on an OS. Dom0 is a management domain 
that is privileged by Xen to directly access the hardware and 
it manages the initiation/termination of other domains. 

 

Dom0
(Backend driver)

Hardware (CPU, Memory, Devices)

Xen Hypervisor

DomU
(Frontend

Driver)

DomU
(Frontend

Driver)

DomU
(Frontend

Driver)
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Figure 2: Virtualization with Xen 
 
The hypervisor virtualizes physical resources such as 

CPUs and memory for the guest domains. Most of the non-
privileged instructions can be executed by the guest domains 
natively without the intervention of the hypervisor. However, 
privileged instructions will generate a trap into the 
hypervisor. The hypervisor validates the request and allows 
it to continue. This makes certain operations such as page 
table manipulation especially expensive in virtualized 
environments. The guest domain can also use hypercalls to 
invoke functions in the hypervisor.  For this, the guest OS 
needs to be ported to use the functionality and this porting is 
called para-virtualization. Xen provides a delegation 
approach for I/O via a split device driver model where each 
I/O device driver called the backend driver runs in Dom0. 
The DomU has a frontend driver that communicates with the 
backend driver via event channels and shared memory. 

D. Performance Overhead of Checkpointing under 

Virtualization 

A quick experiment of the performance of page 
protection in native vs. virtualized environments, both at the 
user level, shows that one page protection call (specifically, 
mprotect() calls under Xen) is approximately 4 times slower 
under virtualization. To understand why there is this 
enormous overhead, we need to look under the hood of how 
the relevant system calls operate under virtualization.  

 
During the checkpoint interval, each time the application 

writes to a write-protected page, it receives a page fault that 
traps into the signal handler. Figure 3 shows how the page-
fault is handled in native and virtual environments like Xen. 
Unlike the native environment, under virtualization, this call 
is trapped to the hypervisor. The signal handler issues a page 
protection call to unprotect the page. This page protection 

system call goes into kernel space and issues a call to update 
the page table. The page table update invokes a hypercall to 
trigger a translation look-aside buffer (TLB) flush because 
TLB must be flushed to be synchronized with the page table. 
A hypercall is needed since the privileged page table 
operations can only be done in the context of the hypervisor. 
The increased number of context switches between kernel-
space and the hypervisor and the added overhead of 
scheduling each of these in the virtual environment, makes 
the whole cycle very expensive.  

 

 
 (a) Native                             (b) Under virtualization    

Figure 3: Page fault handling on a write operation to a 

protected page 
 
Understanding this overhead and its impact on 

checkpointing is one contribution of our work. We now 
delve into our approaches for solving this issue.  

III. HYPERVISOR-ASSISTED CHECKPOINTING  

To tackle the significant overhead of page protection 
system calls in virtual environments, we introduce a new 
model of checkpointing: hypervisor-assisted application 
checkpointing. The model has two key aspects: (i) support in 
the hypervisor to speed up certain operations that are key to 
checkpointing, and (ii) a new model of application-
hypervisor interaction motivated by our checkpointing 
application. An important aspect of the model is its 
practicality and its feasibility of implementation. To that end, 
along with the model we present details of how it can be 
implemented in a sample open-source virtualization platform 
(namely, Xen). Specific checkpointing techniques that use 
this model are discussed later in Section  IV. 

A. Checkpointing Support in the Hypervisor 

The first aspect (namely, support in the hypervisor) 
involves changes to the hypervisor to provide primitives that 
can track pages changed in a transaction. These primitives 
provide the ability for the caller to inform the hypervisor 
about (i) the memory associated with the critical data area, 
and (ii) the start and end of a transaction. Implementing these 
APIs can be considered similar to making an ioctl() or 
system call to the hypervisor and the relevant data (e.g., 
identity of the critical data area) is passed as arguments. 

At a high level, the hypervisor implements techniques to 
track the changes in the critical data area within a transaction 
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and provide the caller with these changes at the end of the 
transaction. However, there are interesting design and 
implementation issues in how this is tackled by the 
hypervisor and we elaborate on these below.  

One key issue is that the hypervisor must be able to over-
ride the application page fault handling mechanism, so that it 
can tackle it in the hypervisor. This is relatively simple, 
given the higher privilege level at which the hypervisor 
operates. In particular, a new page fault handler in the 
hypervisor checks if a fault is within the critical data area 
registered with it and, if so, handles the fault and returns a 
success so execution can proceed normally in the application. 
A second related design issue is what to do in the fault 
handler. One possible approach is to track the identity of the 
faulted page, which is a hypervisor-assisted counterpart to 
the PT approach from Section  II.B and is elaborated on in 
Section  IV.A. However, our architecture is general enough to 
allow the fault handling logic to be pluggable. This allows 
for interesting new techniques supported by our paradigm 
and they are described in Section  IV. 

Another design issue is process identification, since 
isolation is a key feature of virtualization that must continue 
to be supported. While this also appears to be straight-
forward, in practice it is not trivial.  The currently running 
process is not visible to the hypervisor. However, there is an 
interesting technique based on address space changes where 
the address space is used to infer the identity of the process 
and this is discussed in more detail below in subsection  D.  

Hypervisors are designed to have a low footprint. Clearly, 
storage of too much information within the hypervisor 
context is undesirable. The bulk of the storage for our 
techniques involves tracking and maintaining the changed 
data through the checkpoint cycle. In our architecture, the 
caller allocates space for storing this information, and the 
hypervisor directly writes to that area. This obviates the need 
for maintaining this information within the hypervisor.  

B. Application-Hypervisor Interaction 

In our discussion above in subsection  A, we deliberately 
avoided the issue of how the primitives provided by the 
hypervisor are invoked by the application. This is a crucial 
aspect of our technique and we elaborate on that below.  

A hypercall is a software trap from a guest OS to the 
hypervisor, just as a syscall is a software trap from an 
application to the kernel. Guest domains use hypercalls to 
request privileged operations like updating the page-tables. 
Traditionally hypercalls are only possible from inside the 
guest operating system. Applications are not allowed to 
invoke hypercalls directly. The traditional approach would, 
therefore, create corresponding system calls in the guest 
operating system that will be invoked by the application, 
which would then translate to our checkpointing hypercalls. 
Although potential performance benefits may still be realized 
by this implementation, there is a deployment issue. 
Changing the guest operating system for each deployment 
supported by the application is non-trivial.  

To tackle this issue, we introduce the concept of secure 
direct hypervisor calls from the application. This is useful 
when a guest domain needs to be deployed using an 

unmodified guest OS. In this model, the application directly 
talks to the hypervisor bypassing the guest OS. This model 
of communication is also novel from a virtualization 
perspective.  

There are a few ways in which the model can be 
implemented. Regular system calls and hypercalls from the 
guest operating system are traditionally implemented in x86 
architectures via an interrupt vector with values 0x80 and 
0x82 respectively. We have implemented the user-to-
hypervisor call through an additional interrupt vector 0x84 as 
shown below. 

 

 
Figure 4: User-to-Hypervisor Call 

 
For security purposes, only a set of pre-defined hypercalls 
are allowed to use the 0x84 interrupt vector.  Additionally, 
these hypercalls are only allowed to work in the process 
space of the calling process, thereby creating a level of 
isolation essential for security. (Isolation is obtained using 
the techniques in subsection  D.)  

There are alternative approaches. For example, 
communication between the application and the hypervisor 
could be done through a shared memory that is 
communicated by the application to the hypervisor through a 
privileged domain like Dom0 in Xen. For brevity, we do not 
elaborate on these alternative approaches.  

C. Access Control  

It is possible that administrators would like to limit the 
application instances that can invoke the hypervisor-assisted 
checkpointing primitives. Authorization of valid applications 
can be done by using a policy module in Dom0. To achieve 
this, the application inside the guest domain can be 
provisioned with a key, and this key can be used to 
authenticate it to the hypervisor via a privileged domain like 
Dom0. The application can initiate the process via a network 
connection to Dom0. The privileged domain Dom0 can 
provide the mechanisms for registering the application and 
issuing any required shared tokens. Once the application is 
registered with Dom0, it is allowed to invoke the hypercalls 
directly.   

D. Implementation: Process tracking 

As discussed earlier, a user space process in the guest OS 
is allowed to make hypercalls to invoke functionality directly 
in the hypervisor. For security and functionality, Xen needs 
to uniquely identify the user process when it makes a 
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hypercall. This requires guest process tracking at the 
hypervisor-level.  

In Linux, each process has a unique address space and 
our technique uses this for identifying the process within the 
hypervisor  [22] [23].  Our technique is based on the fact that 
the address space change is visible to the hypervisor 
although a guest process or a task is not. For example, on 
x86 architectures, a new value being loaded onto a cr3 
register (page directory) indicates loading of a new address 
space and this action is done by the hypervisor. When the 
guest installs a new value into the cr3 register, Xen validates 
this entry. This indicates the creation of a new guest process 
to the hypervisor. Similarly, when the guest process 
terminates, its address space is torn down and the pages are 
unmarked and returned to the guest operating system. This is 
also tracked by the hypervisor. In practice, this simple 
method works well  [22] [23] for tracking the identity of a 
user-space process. 

IV. OUR APPROACHES 

In this section, we introduce our incremental 
checkpointing approaches. In addition to hypervisor-assisted 
page-tracking based approach (PTxen), we also introduce a 
new concept of emulation-based approaches. Emulation-
based approaches for checkpointing have not been studied in 
earlier literature and both hypervisor-assisted (Emulxen) and 
user-level (Emul) emulation techniques are introduced in this 
paper. Additionally, motivated by live migration techniques 
in Xen  [17], we present a page-table scanning based 
approach that we call Scanxen.  

Table 1 below gives a high-level categorization of our 
approaches and existing approaches (prior work in italics). 
Hypervisor-assisted approaches implement most of their 
functionality in the hypervisor while user-space approaches 
do so in pure user space.  Scan-based approaches need full 
support from the hypervisor and do not have an equivalent 
implementation in user-space.  
 

 Page-tracking 
based 

Emulation-
based 

Scan-based 

Pure user 
space 

Page-tracking (PT) Emul  

Hypervisor-
assisted 

PTxen Emulxen Scanxen 

Table 1: Categorization of checkpoint approaches 
 

A. Page-tracking based hypervisor-assisted: PTxen 

PTxen is a page-tracking based approach similar to the 
PT technique presented in Section  II.B, but implemented 
mostly inside the hypervisor. At the beginning, when the 
application declares its critical data area, the hypervisor 
installs the address ranges for the critical data area in an 
internal data structure. At the start of each checkpoint cycle, 
the hypervisor write-protects all the pages in the critical data 
area for the application. The hypervisor also overrides the 
standard page-fault handler to trap any writes to the pages. 
When the application writes to a page, the page fault handler 

within the hypervisor is invoked. This in turn puts the page 
in the modified page list and unprotects the page.  

 
 

Figure 5: Page fault handling with PTxen 

 
Figure 5 shows the operation of PTxen. As seen in the 

figure, the page-fault is trapped by the hypervisor and 
operated on in that layer, instead of propagating it to the 
user-space application. The simple call flow eliminates a 
number of overheads associated with a single write operation. 
As compared to the call flow in Figure 3(b), the numerous 
context switches between user-space, guest OS and the 
hypervisor (as experienced in the standard PT case) are 
eliminated. These are replaced by the majority of work being 
done in the hypervisor, thereby reducing the context-switch 
and scheduling overhead and multiple calls to page 
protection by the application. Additionally, in comparison to 
Figure 3(a), we see that the hypervisor-assisted model does 
page protection at a lower layer (hypervisor) than the native 
case (application layer) allowing for the possibility that its 
performance can be even better than native performance. 

PTxen can work in parallel with other techniques like 
live migration  [17]. Since both pieces of code are 
implemented in the hypervisor and override the page fault 
handler, they can be combined to coexist in the hypervisor. 

B. Emulation-based: Emul 

The page-tracking approach discussed above dealt with 
changes at the granularity of pages. An emulation-based 
technique deals with changes being maintained at the word-
level granularity.  

At a high level, emulation-based approaches also depend 
on a page-fault mechanism for tracking changes. Once a 
page-fault is detected they operate at the granularity of a 
word. They write-protect the critical data area at the 
beginning. A separate unprotected mapping (e.g. via mmap) 
is maintained for the CDA. When the application writes to 
the protected area, the system generates a protection 
violation which is then communicated to the application. 
Within the signal handler, the application detects the word 
that is written to, makes a copy of the changed word and then 
writes to the critical data area using the alternate mapping 
without unprotecting the page. In x86 architectures, the write 
is emulated using the x86 ‘MOV’ instruction so the data is 
written one-word at a time.  At the end of the checkpoint 
cycle, the application has a list of all the changed words and 
can use this list to build a checkpoint. Since the list is 
maintained at the word level, only the data that has really 
been modified needs to be migrated to the backup, thereby 
saving bandwidth and compute power.  
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C. Emulation-based hypervisor-assisted: Emulxen 

Emulxen is the hypervisor-assisted version of the 
emulation approach discussed above in Subsection  B. When 
the application declares its critical data area, the hypervisor 
write-protects all the pages in the critical data area. Similar to 
the PTxen case, the hypervisor overwrites the page fault 
handler to trap all page faults locally. When the application 
writes to the critical data area, the system generates a page-
fault which is trapped by the page-fault handler in the 
hypervisor. The page fault handler notes the address and the 
value of the dirty words and records them in a buffer 
provided by the application. It then emulates the write as 
with Emul. At the end of the checkpoint cycle, the 
hypervisor has the full list of changed words and the values 
of the changed words in the buffer in application space.  

D. Scan-based hypervisor-assisted: Scanxen  

The scan-based approach is motivated by live migration 
in Xen  [17]. Instead of protecting and unprotecting pages 
explicitly, the technique is based on scanning page table’s 
dirty bits to obtain a list of modified pages. When the 
application declares its critical data areas, the hypervisor 
keeps the critical data areas in its list of pages to track. 
Whenever the application writes to a page, the hardware 
tracks the write by setting the dirty bit in the page table. 
However, in normal systems, the dirty bit would be reset as 
soon as the page is swapped to disk. Xen supports the 
concept of shadow-page tables where the guest OS uses a 
copy of the page tables that is independent of the hardware 
page tables. Xen propagates the changes made to the shadow 
page tables to the hardware page tables and vice versa. 
Scanxen uses the dirty bits in the shadow-page tables to track 
the modified pages. (In contrast, PT-based and Emulation-
based do not rely on shadow-page tables, but maintain their 
own dirty pages.) At the end of the checkpoint cycle, 
Scanxen parses the guest OS shadow page table to determine 
the set of dirty bits in the critical data area for a given 
application. It builds a list of changed pages from this and 
passes it to the application. For performance reasons, in our 
implementation, we did not use the “log dirty bit” facility 
from Xen live migration for maintaining the dirty bits, but 
constructed them directly from the shadow page tables.  

Note that for each checkpoint cycle, Scanxen has to walk 
through the guest OS page table and access all the pages in 
the critical data area. The cost of Scanxen depends on the 
size of the critical data area, and not on the number of dirty 
pages/words in a transaction. This can be expensive if the 
critical data area buffer is large.  

V. MICROBENCHMARK 

In order to evaluate the performance of each approach we 
built a microbenchmark. Memory-write operations have a 
direct impact on the checkpoint performance; hence the 
microbenchmark first allocates a critical data area and then 
performs a number of memory write operations. It 
transactionalizes each write or a group of writes in the CDA 
by containing them between checkpoint begin and end calls. 

Four key parameters were used to parameterize the 
benchmarks:  

• Size of the critical data area (CDA) 

• Writes-per-page (WPP): Average number of write 

operations on a page within a transaction.  

• Pages-per-transaction (PPT): Average number of 

unique pages written to in each transaction 

(checkpoint cycle).   

• Transaction count (Tcount): Total number of 

transactions (checkpoint cycles) in the experiment.  
Total size of a transaction (Tsize) is defined as the total 

number of writes in a transaction which is the product of 
writes-per-page (WPP) and pages-per-transaction (PPT):  

Tsize = WPP*PPT. 
The results in this section show the time taken for Tcount = 
100000 transactions. 

In this section, we assess the impact of the above 
parameters on the performance of our approaches. The 
evaluation is useful in understanding which approaches are 
better fitted to certain types of transactions.  The experiments 
have been performed with Xen 4.1-unstable. The Dom0 
kernel was 64-bit Linux 2.6.32-15 and the guest kernel was 
paravirtualized 32-bit Linux 2.6.18-164. Both Dom0 and 
guest kernels were patched with pvops kernel patches  [24].   

A. PT-based approaches 

Figure 6 shows the performance of the two page-tracking 
based approaches (PT and PTxen) with varying PPT and 
WPP. Note that the three runs with different WPPs (4, 8, and 
16) all have the same result for a given approach. This is to 
be expected since varying the WPP for each approach has no 
impact on the performance of the approach. Varying the PPT 
has a direct impact on the performance of the approach. This 
is because page-tracking based approaches incur an overhead 
each time a page is dirtied for the first time with a transaction.  
Once the page is unprotected and written to, there is no 
additional cost for subsequent writes into the page. Hence 
there is a linear increase in overhead with PPT. An important 
result from this experiment is that PTxen shows a tenfold 
improvement in performance, thereby validating the 
hypervisor-assisted approach. 

 
Figure 6: PT vs. PTxen with varying PPT 
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B. Emulation-based approaches 

Figure 7 shows that the emulation-based approaches get 
impacted mainly by transaction size (WPP*PPT) rather than 
individual values of WPP or PPT. This is because emulation-
based approaches emulate every write into a page, be it the 
first write or a subsequent write. So the performance doesn’t 
depend on pages modified per transaction but more on the 
total number of writes within a transaction. This has 
advantages if the transaction has high PPT and low WPP. If 
WPP is low, emulation-based approaches can eliminate 
unnecessary page-table manipulations and have the potential 
to outperform page-tracking based approaches. 

 
Figure 7: Emul vs. Emulxen with varying Tsize 

 
Applications with simple operations that have a small 

number of writes within a transaction, such as list deletions, 
are a good candidate for emulation-based approaches.  

As shown in the figure, a comparison between Emul and 
Emulxen shows a fourfold improvement from Emul to 
Emulxen, further validating the efficacy of the hypervisor-
assisted model.  

C. Emulation vs Page-tracking 

As discussed earlier, emulation is good for small 
transactions or transactions with small number of writes per 
page. In this subsection we investigate the break-even point 
between emulation and page-tracking based approaches. 

Figure 8 shows the comparison between emulation-based 
approaches and page-tracking based approaches. The main 
aim of the experiment is to find the optimal parameter values 
for the two categories of approaches. Figure 8(a) shows that 
in user-space, below 5 writes-per-page (WPP), emulation 
performs better than PT. Figure 8(b) shows that, for 
hypervisor-assisted approaches, Emulxen performs better 
than PTxen for WPP below 1.3. Beyond these two numbers, 
the page-tracking based approaches have better performance.  

The results show that in the user-space, five write 
emulations and page faults are equivalent to a single page 
protection and page fault. Compared to user-space case, 
hypervisor-assisted case shows a much lower break-even 
point (WPP = 1.3). This illustrates the significant overhead 
of page fault handling in user space.   

 
    (a) User level               (b) hypervisor-assisted 

Figure 8: Emulation vs. Page-tracking  

D. Scanxen 

As discussed in the earlier sections, Scanxen is mostly 
dependent on the size of the critical data area. The main 
overhead of Scanxen comes from scanning the page tables to 
get the dirty bits. 

 
(a) vs. User-level 

 
(b) vs. Hypervisor-assisted 

Figure 9: Scanxen performance 
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Figure 9 shows the performance of Scanxen with respect 
to PT (Figure 9(a)) and PTxen (Figure 9(b)). Although most 
of the Scanxen overhead comes from scanning the page-
tables, there is some impact of pages-per-transaction (PPT) 
as can be seen from the positive slope of Scanxen lines in the 
two figures. At the end of each transaction, Scanxen 
constructs the list of dirty pages. The work involved in 
building the list is proportional to the number of dirty pages 

(PPT).  The total cost y can be expressed with a simple linear 

equation:  

y = (PPT dependent cost) + static cost based on CDA. 

Based on Figure 9, we find that: 

y = (0.0625)*(PPT) + 2.5*(size of CDA in MB), 

where the first term represents the amount of work to be 
done for accumulating the list of dirty pages.  

For large critical data areas (e.g., several Mbytes) the 
static cost is dominant, so the first term in the equation is 
negligible. On the other hand when the critical data area is 
small (e.g., several tens of Kbytes) the first term has a bigger 
impact on the overall cost. 

The two figures show the break-even points for Scanxen 
when compared to the page-tracking based approaches. As 
compared to PT, Scanxen performs better with higher values 
of PPT and for smaller CDAs. In hypervisor-assisted page-
tracking case (PTxen), due to the improved performance of 
PTxen, Scanxen cannot outperform it in most cases, except 
when the CDA is smaller (10s or 100s of Kbytes).  

Although Scanxen can be better in performance for 
applications with small size CDA and large PPT transactions, 
the range of values for which it is better is so small that in 
the practical case most applications do not fit the criteria. For 
most real-world applications, PT and PTxen can easily 
outperform Scanxen. In this work we will not present 
additional results on Scanxen. 

E. Summary 

Figure 10 summarizes the performance of the various 
approaches for a sample case of WPP=4. Overall, we note 
that the hypervisor-assisted approaches are 4-10x better in 
performance than user-level approaches.  

 
Figure 10: Comparison of approaches 

 

One interesting observation from the figure is that while 
Emul is better than PT in the user space under virtualization 
(at least for WPP=4), PTxen is better than Emulxen. This 
suggests that the gains in moving page protection to 
hypervisor space are especially significant, making page 
tracking-based approaches with hypervisor assistance 
outperform other techniques. 

VI. WORKLOAD EVALUATION 

To evaluate a more realistic workload, we implemented 
data structures typically used in most applications  [25]. We 
studied two cases – (a) where each transaction had a single 
operation (e.g. an insert or a delete), i.e. Operations-per-
Transaction (OPT) is 1, and (b) where multiple operations 
were merged into one transaction, specifically OPT = 5. 

Table 2 gives a list of the data structures implemented. 
For each data structure it shows the average number of data 
writes and the average number of unique pages written to in 
a transaction by insert and delete operations. In the case of 
OPT=1 the numbers are for a single operation and when 
OPT=5 it is for five operations. In the workload experiment 
10000 unique data structure operations were performed, 
resulting in 10000 transactions for OPT = 1 and in 2000 
transactions for OPT=5. As an example, in the case of AVL 
tree data structure with OPT=1, each data structure insert 
operation created on average 30.5 writes and on average 5.1 
unique pages were modified. As expected, the number of 
write operations increases approximately five times between 
OPT=1 and OPT=5. However, the number of unique pages 
touched by OPT=5 does not grow linearly with respect to 
OPT=1. In fact, in most cases, the number of unique pages 
touched is approximately the same. This is because the 
multiple operations within the transaction may touch the 
same pages several times. 

Table 2: Data Structures and Operations  
 OPT=1 OPT=5 Data 

Structures ops Avg. 

writes 

Avg. 

pages 

Avg. 

writes 

Avg. 

pages 

insert 21.9 4.9 109.9 5.0 aa (AA-trees) 

delete 20.4 6.0 102.0 8.8 

avl (AVL trees) insert 30.5 5.1 152.8 5.1 

bin (Binomial queue) insert 27.9 2.0 139.9 2.3 

dsl insert 10.4 3.1 52.0 3.6 

hashquad  insert 11.3 1.0 56.9 1.6 

hashsepchain  insert 4 1.9 20 1.9 

insert 23.5 3.0 117.8 3.0 leftheap (Leftist heap) 

delete 34.0 9.2 170.0 18.5 

insert 2.8 2.4 14.3 2.8 heap (binary heaps) 

delete 12.5 2.7 62.7 4.1 

insert 4 1.0 20 1.0 list (Linked list) 

delete 1 1 5 1 

insert 3 1.8 15 1.9 queue (Queues) 

delete 2 1 10 1 

rb (Red black tree) insert 13.7 4.6 68.5 4.9 

insert 20.0 4.7 100.4 5.0 splay (Splay trees) 

delete 7.7 3.0 38.8 6.7 

insert 720.7 5.4 3603.9 5.5 tree (Binary search tree) 

delete 1.7 1.7 8.56 4.1 

Dsl=Deterministic skip list 
Hashquad=Quadratic probing hash 
Hashsepchain=Separate chaining hash 
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A. Performance with OPT=1 

 

 

 

 
Figure 11: Workload performance 

Figure 11 shows the performance of some representative 
sets of data structure operations from the table. Note that 
results for all data structures are not shown due to space 
constraints and the fact that they were very similar to the 
ones in the figure. For most operations including the queue, 
list, heap, splay and aa shown in the figures, performance 
improves from PT to Emul to Emulxen to PTxen with PTxen 
being the best in most cases, although there are some 
exceptions. Results for hashquad, bin and tree show that 
Emul is more expensive than PT. This is because these 
operations have a high write rate (high WPP) and a low 
number of unique pages written to (low PPT) in a transaction. 
As discussed earlier, page-tracking based approaches 
outperform emulation-based approaches for applications 
with such characteristics. A tree-insert operation has a very 
high value of WPP = 720.7/5.4 = 133.4, giving the emulation 
based approaches a very high overhead. 

Comparing insert and delete operation for lists for Emul 
and Emulxen, we observe that insert operations are more 
expensive than delete operations. This is because insert 
operations incur more memory writes than delete operations. 
In general, the overhead of emulation based approaches is 
proportional to the number of memory writes.  

 
Figure 12: Speedup from hypervisor-assistance (OPT=1) 

 
Figure 12 shows the speedup of hypervisor-assisted 

approaches compared to their user-level counterparts. 
Emulxen shows up to 4x speedup (an average speedup of 3.5 
across data structures) and PTxen shows a speedup of up to 
13x (an average speedup of 11.4 across all data structures).  

B. Transaction aggregation (OPT=5)  

As shown in Table 2, aggregating operations to create 
bigger transactions increases the number of writes linearly. 
However, the number of unique pages modified by the 
operations remains unchanged in most cases. This is because 
most of the operations modify data on the same set of pages. 
This implies that aggregating operations to create bigger 
transactions should benefit page-tracking based approaches, 
because of their heavy dependence on PPT. Emulation-based 
approaches which are independent of PPT, but dependent on 
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WPP, will have the same performance as before. In this 
subsection we evaluate bigger transactions where OPT=5. 

 

 

 

 
 

Figure 13: Data structure performance with OPT=5 
 
As shown in Figure 13, in most cases, the user level 

implementation of the page tracking based approach (PT) 
surpasses the performance of emulation-based user-level 
approach (Emul). This is in contrast to Figure 11, where 
Emul out-performed PT in a large number of cases, showing 
the effect of decreased PPT on the performance of page-
tracking based approaches.  As compared to Figure 11, 
graphs in Figure 13 for page-tracking based approaches 
show a speedup of five times, whereas emulation based 
approaches do not show any difference in performance. 

 
Figure 14: Speedup with hypervisor assistance (OPT=5) 

 
Figure 14 shows the speedup of hypervisor assisted 

approaches over their user-level counterparts for OPT=5. As 
expected, the results are similar to the case of OPT=1 shown 
in Figure 12. This is because both PT and PTxen get an 
improvement of 5 times with transaction aggregation, 
making their relative performance same as in the case of 
OPT=1.  Emulxen shows a speedup of up to 4 times and 
PTxen shows a speedup of up to 13 times over their user-
level counterparts. 

C. Data Processing Overhead 

At the end of the checkpoint cycle, the modified blocks 
of critical data area need to be either stored to disk or 
transferred to the backup machine over a network. Page 
tracking and emulation-based techniques have to process 
different amounts of data. In our experiments reported here, 
we consider the case where OPT=1. Transaction aggregation, 
as noted earlier, would give better performance (i.e., lower 
data processing overhead) for page tracking-based 
approaches. 

 
Figure 15: Amount of data processed: Page-tracking 
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Figure 16: Amount of data processed: Emulation 

 
Figure 15 and Figure 16 show the amount of data that 

each technique handles. The amount of data processed by 
page-tracking based approaches is of the order of 100s of 
MB. In contrast, for emulation-based approaches in most 
cases the data to be processed is less than 2MB (Note that in 
case of tree-insert, the value of 56MB is too large to show in 
scale.) 

Typical implementations do not have the main process 
handle the data processing. The job of writing to disk or 
copying over to the backup is typically done by another 
thread or helper process. In multi-core machines, the helper 
process can run in parallel on an additional CPU core. In this 
case, the main process just copies the data (dirty pages or 
changed bytes) into a shared buffer. The helper process runs 
in parallel without stalling the main process. In this case, the 
only additional overhead incurred by the main application is 
in copying the modified data to the helper process. The 
helper process can either save the modified data as-is, or can 
do further processing on the data (e.g. difference 
computation for page-tracking based approaches, potential 
data compression, encryption for security). In this work, we 
focus on and evaluate the overhead incurred by the main 
application (namely, the cost of a memory copy).   

In the case of page-tracking based approaches, the main 
application incurs the overhead of copying the modified 
pages to the helper process. Since it does not keep track of 
changes made within the page, it needs to copy the dirty page 
as a whole to the helper. In contrast, the emulation-based 
approaches keep track of modifications at the word 
granularity, so the application in this case needs to copy only 
the modified words to the helper.  

Figure 17 shows total time spent (time for the 10,000 
operations and the data copy to the helper process) by each 
approach, again for the case where OPT=1. We note that in 
most cases, emulation-based approaches take less than 5ms 
(average < 1ms) whereas page-tracking based approaches 
have a higher overhead in time ranging from 10ms to 80ms. 
However, when we look at the total time metric in Figure 17, 

we see that the results of Section  VI.A are still valid: in 
effect, PTxen has overall the best performance. More 
importantly, the hypervisor-assisted approaches are 
significantly better than the user-space approaches.  

 

 
Figure 17: Total time for each approach 

 
It is instructive to compare the overall improvement in 

performance due to hypervisor-assistance, taking memory 
copy overhead also into account. This is shown in Figure 18. 
We observe that PTxen improves in performance over PT by 
approximately a factor of 8, while Emulxen improves over 
Emul by approximately a factor of 4. This is a little lower 
than the improvements seen in Figure 12 due to the constant 
overhead of memory copy. Transaction aggregation (e.g., 
OPT=5) will clearly increase the benefits of PTxen over PT, 
since page reuse within a larger transaction will reduce the 
amount of data copied.    

 
Figure 18: Net speedup of hypervisor-assisted over user 

space approaches 
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VII. CONCLUSION 

In this paper, we discussed application-assisted  
checkpointing in virtualized environments. We identified the 
root cause of the performance bottleneck of application 
checkpointing under virtualization. To overcome this 
bottleneck, we introduced the notion of hypervisor-assisted 
application checkpointing. Our approach implements key 
primitives for application checkpointing within the 
hypervisor. Additionally, our approach introduces the notion 
of direct and secure application-to-hypervisor interaction 
allowing deployment with no changes to the guest operating 
system. Our techniques can also be applied to non-
virtualized environments by incorporating them into the OS 
instead of the hypervisor.  

We have designed and implemented a family of 
application checkpointing techniques. Our techniques are 
very lightweight and can be implemented with minimal 
code; e.g. our prototype for the Xen hypervisor added a few 
hundred lines of code totaling about 0.2% of the hypervisor 
code.  We have introduced emulation-based techniques that 
are useful for small transactions. Page tracking approaches 
with hypervisor assistance show the best result. Compared to 
user-space implementations, our hypervisor-assisted 
application checkpointing shows impressive performance 
gains of 4x~10x based on microbenchmark results and 
4x~13x based on results from our workload evaluation.  
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