Improving Users' Demographic Prediction via the Videos They Talk about

> Yuan Wang, Yang Xiao, Chao Ma, and Zhen Xiao Peking University, China EMNLP2016, 3 November 2016

Table of Contents

- Introduction
- Data
- Indirect Relationships between Users and Videos
- Evaluation
- Conclusion

- Mean Girls, Pretty Woman, The Devil Wears Prada
- House of Cards, Mission Impossible, NBA

- "Will the Big Bang Theory last into the next century?"
- "Sheldon is so cool, I love him!"

"Jim Parsons was nominated for another Emmy Award"

YOUKU优酷

iQIYI爱奇艺

搜狐视频

腾讯视频

V.00.COM

《星球大战:原力觉醒》彩蛋和花絮总汇

三刷影片后,确认了不少彩蛋,下面尽量按照时间顺序排列。 2187 Finn的暴风兵编号为FN-2187,2187是《新 希望》中帝国军关押Leia公主的牢房号码。这个数字本来就是一个彩蛋,《21-87》是由加拿大先锋导演Arthur…

2

豆瓣

查看全文

Data

Normal User

Verified User

User followed by Verified User

Attribute	Completion Rate	Categories		
Gender	95.019%	Male, Female		
Age	18.604%	Teenage (<18), Youngster (18-24), Young (25-34), Mid-age(>34)		
Education BG	17.443%	University, Non-University		
Marital Status	2.203%	Single, Non-Single		

Table 1: Demographic attributes and corresponding categories

Data

	Video	Actor	Keyword
Variety show	344	1007	2925
Movie	306	741	2049
TV	197	515	1302
Total	847	1422	4094

Table 2: Statics of video relevant information (There is anoverlap between the three collections of actors and keywords.)

Discover Indirect Relationships

- Unobvious relationship
 - N*M pairs
- Direct relationship
 - User 2, "Will the Big Bang Theory last into the next century?"
- Indirect relationship
 - User 3 posts, "Sheldon is so cool, I love him!"

Discover Indirect Relationships

Step 1

 $P(v_n) = \frac{num(users \ watched \ the \ n_{th} \ video)}{num(users)}$ $P(w_{ni}|v_n) = \frac{num(users \ watched \ the \ n_{th} \ video \ and \ mentioned \ the \ n_{th} \ keyword)}{num(users \ watched \ the \ n_{th} \ video)}$ $P(a_{nj}|v_n) = \frac{num(users \ watched \ the \ n_{th} \ video \ and \ mentioned \ the \ n_{jth} \ actor)}{num(users \ watched \ the \ n_{th} \ video)}$

Step 2

$$\begin{split} P(v_n | W_m, A_k) &= \frac{P(W_m, A_k | v_n) * P(v_n)}{P(W_m, A_k)} \\ &= \frac{\prod_{w_{ni} \in W_m} P(w_{ni} | v_n) * \prod_{a_{nj} \in A_k} P(a_{nj} | v_n) * P(v_n)}{P(W_m, A_k)} \end{split}$$

Discover Indirect Relationships

Two Baseline Model

Two Indirect Relationship Based Model

Discriminant Model

- Matrix Factorization¹, K=20
- LR², SVM², GBDT³

1 libFFM 2 liblinear 3 XGBoost

Generative Model

- Calculate video demographic tendency
- Calculate user demographic attribute
- Smooth the result

Evaluation

		Precision	Recall	F1	AUC
Gender	Dis-Baseline	0.720	0.714	0.717	0.730
	Dis-Model	0.786	0.779	0.783	0.812 ↑ 11.2%
	Gen-Baseline	0.701	0.687	0.694	0.707
	Gen-Model	0.799	0.802	0.801	0.825 ↑ 16.7%
	Dis-Baseline	0.569	0.541	0.554	*
Age	Dis-Model	0.642	0.653	0.648 ↑ 16.8%	*
2	Gen-Baseline	0.529	0.504	0.516	*
	Gen-Model	0.663	0.645	0.654 ↑ 26.7%	*
Education BG	Dis-Baseline	0.707	0.716	0.711	0.730
	Dis-Model	0.788	0.801	0.795	0.809 ↑ 11.1%
	Gen-Baseline	0.680	0.659	0.669	0.690
	Gen-Model	0.790	0.808	0.799	0.812 ↑ 17.7%
Marital Status	Dis-Baseline	0.565	0.549	0.557	0.571
	Dis-Model	0.657	0.640	0.648	0.659 ↑ 15.4%
	Gen-Baseline	0.572	0.550	0.560	0.581
	Gen-Model	0.682	0.691	0.687	0.696 ↑ 19.8%

Table 3: Prediction accuracy based on users' video describing words. Classes have been balanced.

Evaluation

Evaluation

Figure 5: Results of Fusion Model evaluation (Macro-F1).

Conclusion

- Our motivation is that user's video related behavior is usually under-utilized on demographic prediction tasks.
- With the help of third-party video sites, we detect the direct and indirect relationships between users and video describing words, and demonstrate this effort can improve the accuracy of users' demographic predictions.
- To our knowledge, this is the first work which explores demographic prediction by fully using users' video describing words.
- This framework has good scalability and can be applied on other concrete features, such as user's book reading behaviors and music listening behaviors.

Thanks!