
Optimizing the Performance of Virtual Machine
Synchronization for Fault Tolerance

Jun Zhu, Zhefu Jiang, Zhen Xiao, Senior Member, IEEE, and Xiaoming Li, Senior Member, IEEE

Abstract—Hypervisor-based fault tolerance (HBFT), which synchronizes the state between the primary VM and the backup VM at a

high frequency of tens to hundreds of milliseconds, is an emerging approach to sustaining mission-critical applications. Based on

virtualization technology, HBFT provides an economic and transparent fault tolerant solution. However, the advantages currently come

at the cost of substantial performance overhead during failure-free, especially for memory intensive applications. This paper presents

an in-depth examination of HBFT and options to improve its performance. Based on the behavior of memory accesses among

checkpointing epochs, we introduce two optimizations, read-fault reduction and write-fault prediction, for the memory tracking

mechanism. These two optimizations improve the performance by 31 percent and 21 percent, respectively, for some applications.

Then, we present software superpage which efficiently maps large memory regions between virtual machines (VM). Our optimization

improves the performance of HBFT by a factor of 1.4 to 2.2 and achieves about 60 percent of that of the native VM.

Index Terms—Virtualization, hypervisor, checkpoint, recovery, fault tolerance.

Ç

1 INTRODUCTION

RELIABLE service plays an important role in mission-
critical applications, such as banking systems, stock

exchange systems, and air traffic control systems, which
cannot tolerate even a few minutes’ downtime. Although
service providers have taken great efforts to maintain their
services, various failures, such as hardware failures [2],
maintenance failures [3], and power outage [4], still occur in
data centers. Currently, when a failure happens, it will take
up to hours or days to resolve the problem, which will incur
huge economic losses for some key applications.

Obviously, reliable data centers need an effective and
efficient failure recovery mechanism to prevent catastrophe.
Hypervisor-based fault tolerance (HBFT) [5], [6], [7], employ-
ing the checkpoint-recovery protocol [8], is an emerging
approach to sustaining mission-critical applications. HBFT
works in the primary-backup mode. It capitalizes on the
ability of the hypervisor or virtual machine monitor (VMM)
[9] to replicate the snapshot of the primary VM from one host
(primary host) to another (backup host) every tens to hundreds
of milliseconds. During each epoch (the time between
checkpoints), hypervisor records the newly dirtied memory
pages of the primary VM running on the primary host. At the
end of each epoch, the incremental checkpoint [10] (i.e., the
newly dirtied pages, CPU state and device state.) is
transferred to update the state of the backup VM which
resides in the backup host. When the primary VM fails, its
backup VM will take over the service, continuing execution
from the latest checkpoint.

HBFT has two main advantages in providing fault
tolerant services. First, HBFT employs virtualization tech-
nology and runs on commodity hardware and operating
systems. It is much cheaper than the commercial fault
tolerant servers (e.g., HP NonStop Server [11]) that use
specialized hardware and customized software to run in
fully synchronous mode. Second, HBFT works in the
hypervisor layer and can provide fault tolerance for legacy
applications and operating systems running on top of it.

However, the overhead of current HBFT systems is quite
high during failure-free, especially for memory-intensive
workloads. Lu and Chiueh reported that the performance of
some realistic data center workloads experienced a
200 percent degradation [12]. Even with asynchronous state
transfer optimization, Remus still leads to a 103 percent
slow down compared to the native VM performance for
some benchmark [5]. Kemari reported a similar perfor-
mance penalty [6]. The goal of this work is to improve the
performance of the primary VM during failure-free.

The performance overhead of HBFT comes from several
sources. Output commit problem [10], e.g., a disk write
operation or a network transmit operation, is a well-known
source of the overhead. How to reduce this overhead is an
active area of research [10], [13], [14]. In this paper, we
address a different source of the overhead: that due to
memory state synchronization between the primary and the
backup machines. In a typical HBFT system, the hypervisor
needs to track dirtied memory pages of the primary VM in
each epoch.1 The memory tracking mechanism of the
shadow page table (SPT) incurs a large number of page
faults [16], [17], conflicting the goal of [17]: “Reducing the
frequency of exits is the most important optimization for classical
VMMs.” In addition, at the end of each epoch, all the dirtied
pages have to be mapped and copied to the driver domain
(Domain0) before being transferred to the backup host,
which further causes serious performance degradation.

1718 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 12, DECEMBER 2011

. J. Zhu, Z. Jiang, and Z. Xiao are with the School of Electronics Engineering
and Computer Science, Peking University, China 100871.
E-mail: {zhujun, jzf, xiaozhen}@net.pku.edu.cn.

. X. Li is with the State Key Laboratory of Software Development
Environment, MOST, China 100871. E-mail: lxm@pku.edu.cn.

Manuscript received 17 Apr. 2010; revised 13 July 2010; accepted 7 Aug.
2010; published online 4 Nov. 2010.
Recommended for acceptance by D.K. Panda.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-04-0240.
Digital Object Identifier no. 10.1109/TC.2010.224.

1. Memory tracking mechanism can also be implemented on nested
page table [15]. Unless stated otherwise, we improve the HBFT
implemented on SPT.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Contributions. In this paper, we present an in-depth
examination of HBFT and optimizations to improve its
performance. The following is a summary of our
contributions.

First, we find that shadow page table entries (shadow
entry for short) exhibit fine reuse at the granularity of
checkpoint epochs, and that shadow entry write accesses
exhibit fine spatial locality with a history-similar pattern.
These observations provide the insight in building an
efficient HBFT.

Second, we introduce two optimizations, read-fault
reduction and write-fault prediction, for the memory tracking
mechanism. They improve the performance by 31 percent
and 21 percent, respectively, for some workloads.

Finally, inspired by the advantages of superpage in
operating systems, we present software superpage to map
large memory regions between VMs. The approach accel-
erates the process of state replication at the end of each
epoch significantly.

With the above optimizations, the primary VM achieves
a performance about 60 percent of that of the native VM.

The remainder of this paper is organized as follows: The
next section presents an overview of the system architecture
and some related techniques. Section 3 analyzes the
behavior of shadow entry accesses across checkpoint
epochs. The details of our optimizations are presented in
Section 4 and evaluated in Section 5. Section 6 describes the
related work and Section 7 concludes.

2 BACKGROUND

Logging and checkpointing are two techniques in providing
fault tolerant solutions (see the excellent survey by
Elnozahy et al. [13]). HBFT implements fault tolerance in
the hypervisor and protects the whole VM that encapsulates
the guest OS and the applications. It can be classified into
two categories: log-based systems such as VMware FT [18]
and Marathon everRun level 3 [19], and checkpoint-based
systems such as Remus [5], Kemari [6], and our Taiji system
[7]. Systems in the former category suffer from two
shortcomings. First, they depend heavily on the target ISA
(instruction set architecture): each architecture needs a
specific implementation in the hypervisor. Second, they
incur a high overhead in multiprocessor environment due
to shared memory access [20]. For this reason, current
commercial log-based systems can work only in single
processor environment.

In this paper, we focus on checkpoint-based HBFT [5],
[6], [7] which has attracted much interest recently. In such a

system, the state of the backup VM is frequently synchro-
nized with that of the primary VM. When the primary VM
fails, the backup VM takes over seamlessly. Before the
release of Remus, we developed a similar prototype Taiji
[7] on Xen [21]. Unlike Remus which uses separate local
disks for the primary VM and the backup VM, our system is
deployed with Network Attached Storage (NAS). This
alleviates the need to synchronize modified disk contents.
Since it accesses the shared storage at the block level, file
system state is maintained in case of fail over. Should
shared storage become a single point of failure, RAID
(Redundant Array of Inexpensive Disks) [22] or commercial
NAS solutions (e.g., Synology Disk Station [23]) can be
employed. In this section, we first introduce the architecture
of Taiji and then its memory tracking mechanism.

2.1 Taiji Prototype

The architecture of Taiji is shown in Fig. 1. The primary VM
and the backup VM reside in separate physical hosts. Each
host runs a hypervisor (i.e., Xen). Initially, the two VMs are
synchronized by copying the state (i.e., all memory pages,
CPU state and device state) of the primary VM to the backup
VM. Then, the primary VM runs in repeated epoches by
suspending/resuming its VCPUs. In each epoch, the
primary hypervisor captures the incremental checkpoint
(i.e., changed memory pages, CPU state and device state) of
the primary VM and sends it to the backup host through
Domain0. The output of the primary VM generated in each
epoch is blocked in Domain0 until the acknowledgment of
the checkpoint is received from the backup host. The
hypervisor on the backup host (backup hypervisor) updates
the state of the backup VM accordingly.

As a checkpoint-recovery protocol, consistent state
between the primary VM and the backup VM is a
prerequisite. Taiji implements checkpointing by repeated
executions of the final phrase of the VM live migration [24],
[25] at a high frequency of tens of milliseconds. Fig. 2
illustrates the general execution process of checkpoint-
based HBFT. This execution process is suitable for all
checkpoint-based HBFT, not specific to Taiji.

ZHU ET AL.: OPTIMIZING THE PERFORMANCE OF VIRTUAL MACHINE SYNCHRONIZATION FOR FAULT TOLERANCE 1719

Fig. 1. The architecture of Taiji. The execution of the primary VM is divided into epochs. In each epoch, Domain0 obtains an incremental checkpoint
of the primary VM, sends it to the backup host, and handles the output commit problem.

Fig. 2. General execution process of HBFT.

At the beginning of each epoch (A), the primary
hypervisor initializes memory tracking mechanism for the
primary VM. During each epoch (between A and B), the
modified pages are tracked. At the same time, output state,
e.g., transmitted network packets and data written to disk,
is blocked and buffered in the backend of Domain0 [21]. At
the end of each epoch (B), the guest OS is paused, and dirty
memory pages are mapped and copied to Domain0. These
dirty pages, as well as CPU state and device state, are then
sent to the backup host (C) through Domain0’s network
driver, and the guest OS is resumed simultaneously. Upon
receiving acknowledgment from the backup host (F),
Domain0 commits the buffered output state generated in
the last epoch (the epoch between A and B).

In general, there are several substantial performance
overheads from the above mechanism. The memory tracking
mechanism (Section 2.2) relies on hardware page protection,
so the “running” guest OS generates more page faults than
normal. Dealing with page faults is nontrivial, especially in
virtualized systems [17]. Furthermore, at the end of each
epoch, the guest OS has to be paused, waiting for Domain0 to
map and copy the dirty pages into Domain0’s address space.
Mapping physical pages between VMs is expensive [26],
lengthening the “paused” state of the guest OS.

2.2 Memory Tracking

In order to record dirty pages in each epoch, HBFT employs
a memory tracking mechanism which is called the log dirty
mode in Xen.2 The log dirty mode is implemented on the
SPT. Fig. 3 shows the details of SPT, which is the software
mechanism of memory virtualization. The structure of SPT
is the same as the guest page table. When running in a VM,
the guest OS maintains guest page tables (GPT) that
translate virtual addresses into physical addresses of the VM.
The real page tables, exposed to the hardware MMU, are
SPTs maintained by the hypervisor. SPTs directly translate
virtual addresses into hardware machine addresses. Each
shadow entry is created on demand according to the guest
page table entry (guest entry for short) and physical-to-
machine table (P2M). The log dirty model relies on the
hardware page protection of the SPT to track memory write
operations by the guest OS.

The log dirty mode was first designed for VM live
migration to track dirty memory pages. VM live migration
employs an iterative copy mechanism to ease performance
degradation during migration. In the first iteration, all the

VM pages are transferred to the designated host without
pausing the VM. Subsequent iterations copy those pages
dirtied during the previous transfer phase. These subse-
quent iterations are called “pre-copy” rounds. In each “pre-
copy” round, the hypervisor enables the log dirty mode of
SPT to record dirty pages. The principle of the log dirty
mode is as follows: Initially, all the shadow entries are
marked as read-only, regardless of the permission of its
associated guest entries. When the guest OS attempts to
modify a memory page, a shadow page write-fault occurs
and is intercepted by the hypervisor. If the write is permitted
by its associated guest entry, the hypervisor grants write
permission to the shadow entry and marks the page as a
dirty one accordingly. Subsequent write accesses to this page
will not incur any shadow page faults in the current round.

In the current implementation, when tracking dirty
pages in the next round, Xen first blows down all the
shadow entries. Then, when the guest OS attempts to access
a page, a shadow page fault occurs since no shadow entry
exists. Xen intercepts this page fault, reconstructs the
shadow entry, and revokes its write permission. By doing
so, Xen makes all the shadow entries read-only. Thus, the
first write access to any page can be intercepted, and dirtied
pages can be tracked.

Therefore, the log dirty mode results in two types of
shadow page faults. First, when the shadow entry does not
exist, both read and write access will generate a shadow
page fault. Second, when an attempt is made to modify a
page through an existing shadow entry without write
permission, a shadow page write-fault occurs.

3 BEHAVIOR OF SHADOW ENTRY ACCESS

Recall that the log dirty mode results in a considerable
number of shadow page faults which result in a substantial
performance degradation. To quantify this, we run SPEC
CINT2006 (CINT) [27], SPEC CFP2006 (CFP) [28], SPEC
Jbb2005 (SPECjbb) [29], and SPEC Web2005 (SPECweb) [30]
in the primary VM, and examine the behavior of shadow
entry accesses, including the shadow entry reuse and the
spatial locality of write accesses.

We study shadow entry accesses at the granularity of
epochs, and a shadow entry is recorded at most once during
a single epoch, no matter how many times it is accessed.
The experiment in this section obtains one checkpoint of the
guest OS every 20 msec. Other experiment parameters,
hardware configurations and detailed description of bench-
marks are discussed in Section 5.

3.1 Shadow Entry Reuse

The behavior of page table entry reuse, at the granularity of
instructions, has been well studied in the literature [31]. We
find that, even at the granularity of epochs, shadow entry
accesses exhibit a similar behavior. In this paper, shadow
entry reuse is defined as: if a shadow entry is accessed in an
epoch, it will likely be accessed in future epochs.

Fig. 4 demonstrates the degree of shadow entry reuse in
different workloads. Reuse is measured as the percentage
of unique shadow entries required to account for a given
percentage of page accesses. In the workload of CFP,
which reveals the best shadow entry reuse, less than
five percent of unique shadow entries are responsible for

1720 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 12, DECEMBER 2011

2. We will use memory tracking mechanism and log dirty model in this
paper interchangeably.

Fig. 3. The structure of shadow page table.

more than 95 percent page accesses. Even SPECweb, a
larger workload, has a fine reuse behavior. Although
SPECjbb has less entry reuse, nearly 60 percent page
accesses are still carried out through only 15 percent
unique shadow entries.

3.2 Shadow Entry Write Access

In this section, we study the behavior of shadow entry write
access. The spatial locality of write accesses is the tendency
of applications to modify memory near other modified
addresses. During an entire epoch, larger than 4 KB (a page
size) virtual memory being modified will involve more than
one shadow entry being write accessed. To describe the
spatial locality, write access stride (stride for short) is
defined as consecutive shadow entries that have been write
accessed in the same epoch. The length of a stride is defined
as the number of shadow entries it contains. Usually,
several strides exist in an L1 SPT.3 We define the average
length of these strides as ave_stride, used to depict the
degree of spatial locality of write accesses for each SPT.
Note that here ave_stride is in the range [0, 512]. (512
indicates the total number of page table entries. For a 32-bit
system, the range is [0, 1,024]. For a 64-bit or 32-bit PAE
(Physical Address Extension) [32] system, it is [0, 512].) A
longer ave_stride indicates better spatial locality. The value
of 512 means that all the pages covered by the L1 SPT have
been modified, and 0 indicates that no shadow entry is
write accessed.

Fig. 5 provides the spatial locality of shadow entry write
accesses for the workloads investigated. We divide all
shadow entries that have been write accessed within an
epoch into six groups according to the length of the strides.
For instance, [5], [16] contains all the shadow entries that
reside in the strides of 5 to 16 entries in length. As shown in
Fig. 5, the workload CFP exhibits best spatial locality of write
accesses. More than 90 percent shadow entries are located in
the strides of above 17 entries in length. Surprisingly, nearly
60 percent entries are located in the strides longer than half of
an SPT. Another CPU intensive workload, CINT, also has

fine spatial locality. However, SPECweb exhibits poor spatial
locality, because as a web server, it needs to deal with a large
number of concurrent requests, each of which induces a
small memory modification.

Furthermore, we find that SPT’s write accesses present a
history-similar pattern. That is, the ave_stride of a SPT tends
to keep a steady value within some execution period. In
order to demonstrate this property, we define delta_stride as

delta stride ¼ jave striden � ave stridenþ1j; ð1Þ

where ave striden indicates the ave_stride of a particular SPT
in the nth epoch. Delta_stride is also in the range [0, 512]. A
shorter delta_stride indicates a more history-similar pattern.
It should be noted that we do not use standard deviation to
depict this property since ave_stride values of an SPT
between two epochs far apart may be very different.

Fig. 6 provides the distribution of delta_strides across the
whole execution of each benchmark. With less spatial
locality, SPECweb still exhibits an excellent history-similar
pattern. From Fig. 5, we can conclude that the value of most
L1 SPT’s ave_strides is one, leading the vast majority of
delta_strides to be zero. Even in the workload CFP with the
lowest degree, 75 percent of delta_stride values are still
below five shadow entries.

ZHU ET AL.: OPTIMIZING THE PERFORMANCE OF VIRTUAL MACHINE SYNCHRONIZATION FOR FAULT TOLERANCE 1721

Fig. 4. Shadow entry reuse. The reuse degree is represented as shadow
entry access coverage by a given percentage of unique entries.

Fig. 5. Spatial locality of write accesses. The shadow entries is divided
into six groups based on the length of strides where they are located.

3. We follow the terminologies in the Intel Manual [32] here. The L1 page
table is the last level of page table, and L2 page table is the upper level page
table which points to the L1 page table.

Fig. 6. History-similar pattern of write accesses. The degree of history-
similarity is represented as the distribution of delta_strides across the
whole execution of each benchmark.

4 OPTIMIZATION DETAILS

In this section, we will present the optimization details of
our HBFT implementation on Xen. We will first give our
approaches to minimize the performance overhead result-
ing from the log dirty mode. Then, we will present the
software superpage mechanism to map a large number of
memory pages between virtual machines efficiently.

4.1 Log Dirty Mode Optimization

In the previous section, we analyzed the behavior of
shadow entry accesses. Based on these observations, we
propose read-fault reduction and write-fault prediction to
optimize the log dirty mode of Xen.

4.1.1 Read-Fault Reduction

Log dirty mode, first developed for VM live migration, does
not take into consideration the behavior of shadow entry
reuse [24], [25]. In VM live migration, at the beginning of
each pre-copy round, all the SPTs are destroyed. This causes
the first access to any guest page to result in a shadow page
fault and thus write accesses can be identified by the
hypervisor. The side effect of this mechanism is that the first
read access to any page also induces a shadow page fault,
even though only write accesses need to be tracked. This
mechanism has little effect on VM live migration since the
whole migrating process takes only a few number of pre-
copy rounds before completion.

However, for the HBFT system which runs in repeated
checkpointing epochs (rounds) at frequent intervals during
failure-free, the mechanism of the log dirty mode induces
too much performance overhead. Through extensive experi-
ments, we find that these overhead comes from frequent
shadow page faults in each execution epoch because all the
SPTs have been destroyed at the beginning of each epoch.
Dealing with shadow page faults in virtualization environ-
ment incurs nontrivial performance degradation [17]. Based
on the behavior of shadow entry reuse analyzed in Section 3,
we propose an alternative implementation.

Instead of destroying the SPTs at the beginning of each
epoch, we can just make them read-only. This avoids the
overhead of recreating them in the next epoch and yet is
sufficient to trap write accesses in order to record dirty
memory regions. However, making the SPTs read-only
requires checking all L1 shadow entries one by one and
revoke their write permissions. This scanning process can
also be time-consuming. If the number of L1 shadow entries
is large and few of them is reused in the future, this
intuitive approach may not outweigh the original one. In
addition, when entries with write permissions are in the
minority, it is also inefficient to scan all L1 shadow entries
in order to identify them. It is noteworthy that the guest OS
is paused in this scanning period. Longer scanning time
means more performance degradation on the guest OS.

In order to revoke write permissions efficiently, we use a
bitmap marker for each SPT. Fig. 7 illustrates our mechan-
ism. Each bit of the four-bit marker corresponds to one
fourth of the L1 SPT and indicates whether there are
writable entries in the segment. At the beginning of each
epoch, we check the marker to identify segments with
writable entries and only need to scan those segments to
revoke their write permission. We then clear the corre-
sponding bitmap in the maker to zero. During the period of

execution, when a shadow page write-fault occurs, its
associated bitmap is set according to the position of the
shadow entry. In Fig. 7, there are shadow page write-faults
generated through entries in the first and the fourth parts of
the SPT, and the first bit and the fourth bit of the marker are
set accordingly. At the end of this epoch, we only need to
check the shadow entries in the first and fourth parts. Due
to the fine spatial locality of most applications, those entries
with writable permission tend to cluster together, making
scanning process efficient. Thus, the paused period at the
end of each epoch can be kept in an acceptable length.

Though optimized for HBFT systems, our read-fault
reduction is also beneficial for live migration. We are
planning to merge these modifications into the upcoming
version of Xen. In our current implementation, we use a
eight-bit marker for each SPT. How to select the number of
bits for the marker properly is our future work.

4.1.2 Write-Fault Prediction

In order to track dirty pages, hypervisor intercepts write
accesses by revoking the write permission of shadow
entries. First access to any page results in a shadow page
write-fault. Handling page faults incurs a nontrivial over-
head, especially for applications with large writable work-
ing sets [24]. We consider improving log dirty mode further
by predicting which entries will be write accessed in an
epoch and granting write permission in advance.

When a shadow entry is predicted to be write accessed in
the epoch, the page pointed to by this entry is marked as
dirty, and the entry is granted with write permission, which
will avoid shadow page write-fault if the page is indeed
modified later. However, prediction errors will produce
false “dirty” pages which consume more bandwidth to
update the backup VM. The FDRT technique proposed in
[12], which transfers incremental checkpoint at a fine-
grained dirty region within a page, can pick out false dirty
pages before the transfer, but at the expense of computing a
hash value for each page.

Based on the behavior of shadow entry write accesses
analyzed in the previous section, we develop a prediction
algorithm which is called Histase (history stride based)
and relies on the regularity of the system execution. In the
following, we will answer two questions: 1) how to predict
write accesses effectively? 2) how to rectify prediction
faults efficiently?

1722 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 12, DECEMBER 2011

Fig. 7. Selectively check shadow page table entries by the marker and
revoke write permissions at the beginning of each epoch.

To describe the behavior of write accesses, Histase
maintains his_stride for each SPT, which is defined as:

his stride ¼ his stride � �þ ave stride � ð1� �Þ; ð2Þ

where 0 � � < 1. his_stride is initialized to the first value of
ave_stride and the ave_stride obtained from the previous
epoch makes his_stride adapt to the new execution pattern.
The parameter � provides explicit control over the estima-
tion of SPT’s historical stride behavior. At one extreme, � ¼
0 estimates his_stride purely based on the ave_stride from the
last epoch. At the other extreme, � � 1 specifies a policy
that his_stride is estimated by a long history. In this paper,
we set � ¼ 0:7 by default. Histase builds upon the bit
marker of read-fault reduction. When scanning L1 SPTs at the
end of each epoch, ave_stride can be calculated at the same
time with trivial CPU overhead.

When a valid shadow page write-fault occurs, Histase
makes nearby pages writable based on his_stride. Heuristi-
cally, those shadow entries within his_stride forwards and
his_stride/3 backwards are made writable except those that
are not allowed to be writable. Understandably, when a
page is modified, the pages forwards also tend to be
modified due to spatial locality. However, the justification
for predicting backwards is less clear. In practice, some
applications traverse large array reversely with small
probability. In addition, user stack grows toward lower
addresses in some operating systems [31]. Thus, Histase
also predicts a smaller number of backward shadow entries.

Prediction faults are inevitable. In order to rectify them,
Histase takes advantage of an available-to-software bit
(called Predict bit in Histase) and Dirty bit of L1 shadow
entry. When a shadow entry is granted with write
permission due to prediction, Histase sets its Predict bit
and clears the Dirty bit. If the entry is indeed write accessed
in the rest of this epoch, its Dirty bit will be set by the MMU
automatically. At the end of the epoch, Histase checks each
predicted entry and picked out those without the corre-
sponding Dirty bit set as fake dirty pages.

Faulty predictions result in more shadow entries with
write permissions, which will make the scanning process at
the end of the epoch more time-consuming. Fortunately, since
Histase takes effect only when a shadow page write-fault
happens, the predicted entries are close to those pointing to
actual dirty pages. With the help of the marker proposed in
read-fault reduction, scanning process stays efficient.

4.2 Software Superpage

In this section, we introduce software-superpage, and show
how it improves memory state transfer between VMs.

The Xen hypervisor is not aware of any peripherals. It
reuses the Domain0’s drivers to manage devices, including
the network driver. At the end of each epoch, all the dirty
pages have to be mapped into Domain0’s address space for
read-only accesses before being sent to the backup VM
through the network driver. The overhead of mapping/
unmapping memory pages between VMs is rather large.
Since the primary VM is paused in this period, this overhead
results in serious performance degradation. Evidently,
reducing the mapping/unmapping overhead can improve
the performance of the primary VM significantly.

The simplest method to eliminate the overhead is to map
the entire memory pages of the primary VM into Domain0’s
address space persistently, avoiding the map/unmap opera-
tions at the end of each epoch. However, the virtual address
space required in Domain0 must be equal to the primary
VM’s memory size. This is not a problem for the 64-bit
address systems, but the 32-bit systems with limited
address space (4G) still account for a great proportion
nowadays. In addition, many 32-bit legacy applications are
still in use. Therefore, persistent mapping is not practical
when the primary VM is configured with a large memory.

software superpage, designed as a pseudo-persistent
mapping, reduces the map/unmap overhead to a low level.
Our design builds upon two assumptions. First, Domain0
is nonmalicious and can be granted with read-only access
to the primary VM’s entire physical memory. Second,
because of balloon driver [16] or memory hotplug [33], a
system’s memory pages may be changed. We first assume
that the primary VM’s memory size keeps constant when
being protected, then at the end of this section, we will
relax this assumption.

Fig. 8 illustrates the design details. For brevity, we take
32-bit PAE system for example. In the initialization phase of
fault tolerance, Domain0 allocates L1 page tables (PT) for
pseudo-persistent mapping. These L1 PTs point to the
primary VM’s entire memory pages, from zero to the
maximum size. For example, if the primary VM’s memory
size is 4G, then 2,048 L1 PTs in Domain0 are allocated, each
covering 2M physical memory pages. In our design, we
allocate a smaller number of L2 PT entries (PTE) than 2,048
L2 PTEs to point to these L1 PTs. For example, 32 L2 PTEs
(i.e., 64M virtual address space of Domain0). At any time,
among these 2,048 L1 PTs, at most 32 of them are actually
installed into these L2 PTEs. Those uninstalled L1 PTs are
pinned in Domain0’s memory giving Xen an intuition that
these pages are being used as L1 PTs. When coping a dirty
page, Domain0 first checks these L2 PTEs mappings. If the
L1 PT that covers the dirty page has been installed into an L2
PTE, the page can be accessed directly. Otherwise, an L2 PTE
is updated to point to the L1 PT referenced on demand. In
this way, we map/unmap memory pages as superpage
mapping (mapping 2M virtual address space once) with a
limited virtual address space.

In order to reduce the times of updating L2 PTEs, we
employ an LRU algorithm [31] to decide which L2 PTE
should be updated. When an L1 PT is accessed, its

ZHU ET AL.: OPTIMIZING THE PERFORMANCE OF VIRTUAL MACHINE SYNCHRONIZATION FOR FAULT TOLERANCE 1723

Fig. 8. Software superpage. L1 page tables point to the primary VM’s
entire memory pages, and limited L2 page table entries are used to point
to L1 page tables.

associated L2 PTE is marked as the youngest. A demanded
L1 PT is always installed into the oldest L2 PTE. This policy
is based on the observation that the set of pages that have
not been modified recently are less likely to be modified in
the near future. With fine temporal locality of memory
accesses, the majority of pages can be directly accessed with
its L1 PT already being installed.

The advantages of software superpage are two-fold. On
one hand, for fault tolerance daemon, it provides an illusion
that all the memory pages of the primary VM are mapped
into Domain0’s address space persistently. It eliminates
almost all map/unmap overhead. On the other hand, it does
little disturbance to the other parts residing in the same
virtual address space of Domain0 because only a small part
of virtual address space is actually used to access the entire
memory pages of the primary VM.

Outstanding issues. In the design, we make an assump-
tion that the primary VM’s memory pages stay constant.
However, in a typical virtualization environment, page
changes may take place. Transparent page sharing [16], [34]
is a prevalent approach to harness memory redundancy.
Pages are shared among VMs if they have identical or
similar content. The shared pages except the referenced one
are reclaimed from the VMs, and when sharing is broken,
new pages will be allocated to the VMs. In addition, the first
version of Xen PV network driver used a page flipping4-

mechanism which swapped the page containing the
received packet with a free page of the VM [21].

To cope with these challenges, an event channel is
employed in Domain0. If any of the primary VM’s pages is
changed, hypervisor sends a notification to Domain0 through
the event channel. Upon notification, Domain0 updates the
corresponding L1 shadow entry to point to the new page.

5 EVALUATION

The optimizations presented in the previous section are
implemented on Xen-3.3.1, with Domain0 and the primary
VM running XenoLinux version 2.6.18 configured with 32-bit
PAE kernel.

All the experiments are based on a testbed consisting of
two HP ProLiant DL180 Servers, each with two quad-core
2.5 GHz processors (8 cores in total), 12 G memory and a
Broadcom TG3 network interface. The machines are
connected via switched Gigabit Ethernet. We deploy the
primary VM on one of the two machines, and the backup
VM on the other. The primary VM is configured with 2 G
memory. The Domain0 is configured with the remaining

10G memory and four virtual CPUs that are pinned to
different cores of the other CPU socket.

In this paper, we focus on the performance overhead
resulting from synchronizing memory state between the
primary VM and the backup VM in each epoch. The
snapshot of virtual disk and network output commit, which
are two other components of the HBFT system, are disabled
in these experiments to eliminate their influence. The system
performance is sensitive to the length of an epoch. Unless
otherwise specified, we set an epoch 20 msec as default, and
the primary VM is configured with one CPU core. In
Section 5.5, we will evaluate the sensitivity of the length of
epoch and the number of primary VM’s CPU cores.

5.1 Workload Overview

We evaluate our optimization techniques with a variety of
benchmarks representative of real-world applications.
Table 1 lists the workloads. Among them, SPECjbb and
SPECweb are server applications and candidates for fault
tolerance in the real world. The server of SPECweb runs in
the primary VM, and two separate client machines and one
backend simulator (BeSim) are connected with the primary
VM via switched Gigabit Ethernet. CINT and CFP are also
presented for reference points. We run each workload three
times and the average value is presented in this paper.

5.2 Overall Result

Fig. 9 shows the performance of the primary VM which
runs different workloads, and the performance is normal-
ized to that of the native VM running in Xen (baseline). We

1724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 12, DECEMBER 2011

TABLE 1
Workloads Description

4. Menon et al. [35] has shown that page flipping is unattractive.
Fig. 9. The overall performance of the primary VM normalized to
performance of the native VM.

present the following configurations: “Non Optimized”
refers to the unoptimized HBFT. “LogDirty Optimized”
refers to the version with only the log dirty mode
optimized, including read-fault reduction and write-fault
prediction. “LogDirty-Map Optimized” refers to the opti-
mized version with both the optimized log dirty mode and
the software superpage map. We do not compare the
performance with that of the applications running in native
operating systems (i.e., nonvirtualized environment) since
the overhead resulting from virtualization is not the focus of
this work. In practice, virtualization has been widely
deployed for its key benefits, such as server consolidation
and isolation.

As shown in Fig. 9, CINT suffers the worst performance
degradation when running in the unoptimized HBFT,
yielding only about 30 percent of baseline performance. This
is because it has a large writable working set which leads to
high overhead by log dirty mode and memory mapping.
With our optimized log dirty mode and the additional
software superpage mechanism, the performance of CINT
improves by 33.2 percent and 84.5 percent, respectively.

Relative to the optimized log dirty mode, software
superpage optimization gains more improvement for all
workloads. Our optimizations improve the performance of
the primary VM by a factor of 1.4 to 2.2 and achieves about
60 percent of that of the native VM. In the following, we will
examine each optimization in detail.

5.3 Log Dirty Mode Improvement

5.3.1 Experimental Setup

The log dirty mode is the mechanism to record which
memory pages are dirtied. To better understand its impact
on performance, we study this mechanism in isolation as
follows: at the beginning of each epoch, we mark all
memory pages of the primary VM read-only with a
hypercall. Then, the primary VM resumes running for an
epoch of 20msec. The other components of HBFT are
disabled during the above procedure.

5.3.2 Log Dirty Mode Efficiency

We evaluate the log dirty mode with the following
configurations: “OriginXen” refers to the Xen with the

unoptimized log dirty mode, “RFRXen” refers to the
version with the read-fault reduction optimization and
“WFPXen” refers to the optimized version with the
additional write-fault prediction.

Performance. Fig. 10 compares the performance of the
primary VM running in different versions of the log dirty
mode with that of the native VM. The results show that the
log dirty mode of OriginXen incurs substantial perfor-
mance degradation, ranging from 19.8 percent on CFP to
57.4 percent on SPECweb. RFRXen, which exploits the
behavior of shadow entry reuse, improves the performance
of CINT by 31.1 percent relative to OriginXen. It should be
noted that though SPECweb experiences a large number of
requests with short session, it still derives much benefit
from RFRXen, gaining 55.2 percent improvement.

Based on RFRXen, WFPXen improves the log dirty mode
further by predicting shadow page write-faults. As expected,
CINT, CFP, and SPECjbb are improved further, by 21.4 per-
cent, 5.6 percent, and 8.9 percent, respectively, since they
have fine spatial locality as demonstrated in Fig. 5.
Especially, SPECjbb achieves nearly 95 percent of baseline
performance. However, the applications with poor spatial
locality yield little improvement. SPECweb even suffers one
score of degradation (from 402 in RFRXen to 401 in WFPXen).
We will analyze these further by the reduction of shadow
page faults and by prediction accuracy.

Reduction of shadow page faults. To determine where
our optimization techniques differ from OriginXen, Fig. 11
demonstrates the average count of shadow page faults per
epoch with different configurations. RFRXen almost re-
duces the average count of shadow page read-faults to zero
for most applications investigated. However, SPECweb still
suffers considerable read-faults. SPECweb consumes more
SPTs since many concurrent processes exist and the work-
ing set is very large. Due to the constraint of memory size
reserved for SPTs, Xen has to destroy some of SPTs for
newly allocated ones, even though those SPTs will be used
in the near future. Besides, destroying and allocating SPTs
are common since most of the processes have a short

ZHU ET AL.: OPTIMIZING THE PERFORMANCE OF VIRTUAL MACHINE SYNCHRONIZATION FOR FAULT TOLERANCE 1725

Fig. 10. The performance of memory tracking mechanism normalized to
performance of the native VM. Fig. 11. Count of shadow page faults. Each bar indicates the total count

of shadow page faults, and the upper half indicates the count of shadow
page write-fault and the lower half indicates the count of shadow page
read-fault. From left to right, OriginXen, RFRXen, and WFPXen.

lifetime. The majority of shadow page read-faults come
from nonexisting shadow entries, and many read-faults
remain in SPECweb. We are investigating to resize some
resource limits of Xen to cope with the larger working set of
today’s applications.

A somewhat counter-intuitive result is that most
applications running in RFRXen experience more shadow
page write-faults per epoch than in OriginXen (e.g., 934
more for CINT). This is because the elimination of most
shadow page read-faults makes the system run faster. As a
result, more application instructions are issued during a
fixed epoch, which incurs more shadow page write-faults.

Prediction accuracy. Histase combines the behaviors of
spatial locality and history-similar pattern to predict
shadow page write-faults. To better understand the effec-
tiveness of Histase, we use the terminologies from informa-
tion retrieval [36]: recall is the number of true predictions
divided by the total number of dirty pages in each epoch
and precise is the number of true predictions divided by the
total number of predictions. In this experiment, recall can be
seen as a measure of completeness, whereas precision can
be seen as a measure of exactness.

Fig. 12 shows that Histase behaves differently among the
workloads. As expected in Fig. 5, the applications with fine
spatial locality benefit the most. Take CFP for example.
Histase predicts 68.5 percent of shadow page write-faults,
with false predictions being only 29.3 percent. Histase
predicts few shadow page write-faults in SPECweb because
of its poor spatial locality, as demonstrated in Fig. 5.
However, Histase still predicts with high precise since it
bases its prediction on history-similar pattern, and retains
application performance.

5.4 Software Superpage Evaluation

With limited virtual address space of Domain0, software
superpage eliminates almost all of the memory mapping
operations, reducing the primary VM’s paused period
drastically. Throughout this paper, we allocate a fixed
64M virtual address space in Domain0 in order to map all
the memory pages of the primary VM (2 G).

The performance of software superpage mainly depends
upon how effectively we use limited virtual address to map

dirty pages. The LRU algorithm is intended to unmap the
pages that are least likely to be dirtied again, and here we
evaluate how well it achieves that goal.

Table 2 shows the mapping hit ratio for different
workloads running in the primary VM. The hit ratio
reveals the probability that a newly dirtied page has
already been mapped into the limited virtual address
space. Due to the memory access locality, software superpage
performs well for most workloads, with a hit ratio of over
97 percent. This mechanism works not so well for the
workloads with poor locality, which is confirmed by the
hit ratio of SPECweb. Nevertheless, it has mapped nearly
80 percent of the dirty pages accessed.

With a high hit ratio, software superpage eliminates
almost all of the mapping operations, reducing the length
of the paused state greatly. As shown in Fig. 9, software
superpage improves the performance of the primary VM by
at least 30 percent relative to the unoptimized HBFT.

5.5 Sensitivity to Parameters

5.5.1 Length of Epoch

The performance of the primary VM and the output
latency is sensitive to the epoch length since the output
generated in each epoch is delayed until the primary host
receives the acknowledgment from the backup host [10].
Shorter checkpoint epoch means shorter output latency
but higher performance degradation to the primary VM,
while longer checkpoint epoch means better performance
but longer output latency.

Fig. 13 shows the performance of memory tracking
mechanism when the epoch length ranges from 20 msec to
200 msec. It presents the normalized performance of
SPECjbb running with memory tracking enabled, relative
to its performance in the native VM. We can see that our

1726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 12, DECEMBER 2011

Fig. 12. Shadow page write-fault prediction.

TABLE 2
Mapping Hit Ratio of Software Superpage

Fig. 13. Performance of memory tracking mechanism. The epoch length
ranges from 20 msec to 200 msec.

optimizations accelerates the performance of the primary
VM under all configurations, but the gain decreases as the
epoch length increases.

In this paper, we focus on the implementation of the
memory tracking mechanism. How to select the epoch
length is left to the applications. For applications with high
performance requirements (e.g., HPC applications [37]), a
long epoch length is appropriate. But for I/O intensive
applications, such as web servers, shorter epoch is necessary
to maintain the responsiveness of user requests. Addition-
ally, for some complicated applications, it is also appropriate
to choose dynamic checkpoint scheduling, such as aperiodic
checkpointing [38] and cooperative checkpointing [39].

5.5.2 CPU Core Numbers

To demonstrate our optimizations in multicore VMs, we
evaluate the performance of the memory tracking mechan-
ism and the efficiency of software superpage with SPECjbb
suite running in the primary VM configured with different
number of CPU cores. In each test, we set the number of
JVM instances as the number of CPU cores of the primary
VM. In this experiment, the length of epoch is set to 20 msec.

Fig. 14 shows the throughput of SPECjbb configured with
different memory tracking mechanism, and Fig. 15 shows
the throughput of SPECjbb configured with different
number of CPU cores. As shown in Fig. 14, “NativeVM”
configuration, which does not enable memory tracking,
shows the best throughput of SPECjbb running in a VM
with different number of CPU cores. From Fig. 15, we find
that in the un-optimized(“OriginXen”) implementation of
memory tracking, the relative performance descends dras-
tically with the increase of core numbers. The throughput
is surprisingly no more than five percent of the best
throughput when the primary VM is configured with four
cores. Our optimizations accelerates the performance of
memory tracking under all configurations. Even in the four-
core primary VM, our optimized memory tracking mechan-
ism promotes the performance of SPECjbb to nearly
50 percent of the best performance.

Table 3 presents the mapping hit ratio of software
superpage when the primary VM runs SPECjbb in it. With
the increase of JVM instances, the working set of the primary

VM becomes larger and the spatial locality of modified
pages in each epoch becomes worse. The mapping hit ratio
of software superpage decreases accordingly because soft-
ware superpage relies heavily on spatial locality of modified
pages in each epoch. Nevertheless, the mapping hit ratio
remains higher than 90 percent for SPECjbb.

6 RELATED WORK

HBFT is an emerging solution to sustain mission-critical
applications. Bressoud and Schneider [40] proposed the
pioneering system with the lockstep method which
depends upon architecture-specific implementation. Lock-
step requires deterministic replay on the backup VM and is
not convenient for multicore systems. Recently, based on
Xen live migration, Remus [5] and Kemari [6] provide an
alternative solution. However, like most checkpoint-recov-
ery systems, both Remus and Kemari incur serious
performance degradation for the primary VM. We develop
a similar HBFT system, Taiji. In this paper, we abstract a
general architecture of these systems and illustrate where
the overhead comes from.

How to address the overhead of HBFT has attracted
some attention. Closest to our work is Lu and Chiueh’s [12].
They focused on minimizing the checkpoint size transferred
at the end of each epoch by fine-grained dirty region
tracking, speculative state transfer and synchronization
traffic reduction using an active backup system. We
improve the performance of the primary VM by addressing
the overhead of memory page tracking and the overhead of
memory mapping between virtual machines. Though the
focuses are different, these two studies are complementary
to each other.

ZHU ET AL.: OPTIMIZING THE PERFORMANCE OF VIRTUAL... 1727

Fig. 14. The throughput of SPECjbb running with different memory
tracking mechanism.

Fig. 15. The throughput of SPECjbb running with different number of
CPU cores.

TABLE 3
Mapping Hit Ratio of Software Superpage

Checkpoint-recovery mechanism has been used in
various areas to tolerate failures [41], [42], [13]. Many
researchers have been engaged in reducing checkpointing
overhead. For example, incremental checkpointing [43] is
exploited by reducing the amount of data to be saved. The
objective of our work is to optimize the checkpointing
implementation based on hypervisor, which presents a
different challenge.

Prefetching is a well known technique widely applied in
computer systems. There is a large body of literature on
prefetching for processor caches, which can be viewed in
two classes: those that capture strided reference patterns
[44], and those that make prefetching decision on historic
behavior [45]. In addition, many researchers have focused
on reducing MMU walks by prefetching page table entries
into TLB. Distance prefetching [46], which approximates the
behavior of stride based mechanism and tracks the history
of strides, is similar to our Histase prefetching.

Interestingly, our software superpage optimization bor-
rows the idea of temporary kernel mappings [47]. Every
page in high memory can be mapped through fixed PTEs in
the kernel space, which is also an instance of mapping large
physical memory by limited virtual addresses.

Software superpage is inspired by the advantages of
superpage which has been well studied in the literature
[31]. Superpage has been adopted by many modern
operating systems, such as Linux [47] and FreeBSD [48].
These studies rely on hardware implementations of super-
pages which restrict to map physically continuous page
frames. Swanson et al. [49] introduced an additional level of
address translation in memory controller so as to eliminate
the continuity requirement of superpages. Our software
superpage mechanism, which also avoids the continuity
requirement, is designed to reduce the overhead of mapping
memory pages between VMs.

7 CONCLUSION

One of the disadvantages of HBFT is that it incurs too much
overhead to the primary VM during failure-free. In this
paper, we first analyze where the overhead comes from in a
typical HBFT system. Then, we analyze memory accesses at
the granularity of epochs. Finally, we present the design
and implementation of the optimizations to HBFT. We
illustrate how we address the following challenges,
including: 1) analyzing the behavior of shadow entry
accesses, 2) improving the log dirty mode of Xen with
read-fault reduction and write-fault prediction, and 3) design-
ing software superpage to map large memory region between
VMs. The extensive evaluation shows that our optimiza-
tions improve the performance of the primary VM by a
factor of 1.4 to 2.2 and the primary VM achieves about
60 percent of the performance of that of the native VM.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their invaluable feedback. This work is supported by the
National Grand Fundamental Research 973 Program of
China under Grant No.2007CB310900, the MoE-Intel Joint
Research Fund MOE-INTEL-09-06, NSFC Project 61170056,
and the SKLSDE-2010KF of State Key Laboratory of Soft-
ware Development Environment.

REFERENCES

[1] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving
the Performance of Hypervisor-Based Fault Tolerance,” Proc. 24th
IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS ’10),
2010.

[2] N. Rafe, “Minor Outage at Facebook Monday,” 2009.
[3] R. Miller, “IBM Generator Failure Causes Airline Chaos,” 2009.
[4] R. Miller, “Codero Addresses Lengthy Power Outage,” 2010.
[5] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A.

Warfield, “Remus: High Availability via Asynchronous Virtual
Machine Replication,” Proc. Fifth USENIX Symp. Networked
Systems Design and Implementation (NSDI ’08), 2008.

[6] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual
Machine Synchronization for Fault Tolerance,” 2008.

[7] “Taiji.” http://net.pku.edu.cn/vc/files/ft/index.html, 2011.
[8] J. Gray, “Why Do Computers Stop and What Can Be Done about

It?” Proc. Third Symp. Reliability in Distributed Software and Database
System (SRDS ’86), 1986.

[9] R.P. Goldberg, “Survey of Virtual Machine Research,” IEEE
Computer, vol. 7, no. 6, pp. 34-45, June 1974.

[10] E.N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback, and
Fast Output Commit,” IEEE Trans. Computers, vol. 41, no. 5,
pp. 526-531, May. 1992.

[11] W. Bartlett, “HP NonStop Server: Overview of an Integrated
Architecture for Fault Tolerance,” Proc. Second Workshop Evaluat-
ing and Architecting System Dependability, 1999.

[12] M. Lu and T.-C. Chiueh, “Fast Memory State Synchronization for
Virtualization-Based Fault Tolerance,” Proc. 39th Ann. IEEE/IFIP
Int’l Conf. Dependable Systems and Networks (DSN ’09), 2009.

[13] E.N. Elnozahy, L. Alvisi, Y.-M. Wang, and D.B. Johnson, “A
Survey of Rollback-Recovery Protocols in Message-Passing Sys-
tems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-408, 2002.

[14] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas,
“ReViveI/O: Efficient Handling of I/O in Highly-Available
Rollback-Recovery Servers,” Proc. 12th Int’l Symp. High-
Performance Computer Architecture (HPCA ’06), 2006.

[15] AMD, AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, 2006.

[16] C.A. Waldspurger, “Memory Resource Management in VMware
ESX Server,” ACM SIGOPS Operating Systems Rev., vol. 36, no. SI,
p. 181, Dec. 2002.

[17] K. Adams and O. Agesen, “A Comparison of Software and
Hardware Techniques for x86 Virtualization,” Proc. 12th Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’06), 2006.

[18] VMware, “Protecting Mission-Critical Workloads with VMware
Fault Tolerance,” 2009.

[19] “Marathon.” http://www.marathontechnologies.com/, 2011.
[20] G.W. Dunlap, D.G. Lucchetti, M.A. Fetterman, and P.M. Chen,

“Execution Replay of Multiprocessor Virtual Machines,” Proc.
Fourth ACM SIGPLAN/SIGOPS Int’l Conf. Virtual Execution
Environments (VEE ’08), 2008.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” ACM SIGOPS Operating Systems Rev., vol. 37,
no. 5, p. 164, 2003.

[22] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’88), 1988.

[23] “Synology.” http://www.synology.com, 2011.
[24] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I.

Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
Proc. Second Symp. Networked Systems Design and Implementation
(NSDI ’05), 2005.

[25] M. Nelson, B. Lim, and G. Hutchins, “Fast Transparent Migration
for Virtual Machines,” Proc. USENIX Ann. Technical Conf.
(USENIX ’05), 2005.

[26] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L.N. Bairavasun-
daram, K. Voruganti, and G.R. Goodson, “Fido: Fast Inter-
Virtual-Machine Communication for Enterprise Appliances,”
Proc. USENIX Ann. Technical Conf. (USENIX ’09), 2009.

[27] “CINT2006.” http://www.spec.org/cpu2006/CINT2006/, 2011.
[28] “CFP2006.” http://www.spec.org/cpu2006/CFP2006/, 2011.
[29] “SPECjbb2005.” http://www.spec.org/jbb2005/, 2011.
[30] “SPECweb2005.” http://www.spec.org/web2005/, 2011.

1728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 12, DECEMBER 2011

[31] A. Silberschatz, P. Galvin, and G. Gagne, Operating System
Principles. Wiley India Pvt. Ltd., 2006.

[32] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,
2009.

[33] D. Hansen, M. Kravetz, B. Christiansen, and M. Tolentino,
“Hotplug Memory and the Linux VM,” Proc. Ottawa Linux Symp.,
2004.

[34] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese,
G.M. Voelker, and A. Vahdat, “Difference Engine: Harnessing
Memory Redundancy in Virtual Machines,” Proc. Eighth USENIX
Symp. Operating System Design and Implementation (OSDI ’08), 2008.

[35] A. Menon, A.L. Cox, and W. Zwaenepoel, “Optimizing Network
Virtualization in Xen,” Proc. USENIX Ann. Technical Conf., 2006.

[36] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley Reading, 1999.

[37] M.F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization
for High-Performance Computing,” ACM SIGOPS Operating
Systems Rev., vol. 40, no. 2, p. 8, 2006.

[38] Y. Ling, J. Mi, and X. Lin, “A Variational Calculus Approach to
Optimal Checkpoint Placement,” IEEE Trans. Computers, vol. 50,
no. 7, pp. 699-708, July 2001.

[39] A.J. Oliner, L. Rudolph, and R.K. Sahoo, “Cooperative Check-
pointing: A Robust Approach to Large-Scale Systems Reliability,”
Proc. 20th Ann. Int’l Conf. Supercomputing (ICS ’06), 2006.

[40] T.C. Bressoud and F.B. Schneider, “Hypervisor-Based Fault
Tolerance,” Proc. 15th ACM Symp. Operating Systems Principles
(SOSP ’95), 1995.

[41] C. Studies, D. Patterson, A. Brown, P. Broadwell, G. Candea, M.
Chen, J. Cutler, P. Enriquez, A. Fox, E. Kcman, M. Merzbacher, D.
Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N.
Treuhaft, “Recovery Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies,” pp. 1-16, 2002.

[42] S. Sankaran, J.M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P.
Hargrove, and E. Roman, “The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpointing,” Int’l J. High Perfor-
mance Computing Applications, vol. 19, no. 4, pp. 479-493, 2005.

[43] G. Bronevetsky, D.J. Marques, K.K. Pingali, R. Rugina, and S.A.
McKee, “Compiler-Enhanced Incremental Checkpointing for
OpenMP Applications,” Proc. 13th ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming (PPoPP ’08), 2008.

[44] F. Dahlgren, M. Dubois, and P. Stenstrom, “Fixed and Adaptive
Sequential Prefetching in Shared Memory Multiprocessors,” Proc.
Int’l Conf. Parallel Processing (ICPP ’93), 1993.

[45] D. Joseph and D. Grunwald, “Prefetching Using Markov
Predictors,” Proc. 24th Ann. Int’l Symp. Computer Architecture
(ISCA ’97), 1997.

[46] G.B. Kandiraju and A. Sivasubramaniam, “Going the Distance for
TLB Prefetching: An Application-Driven Study,” Proc. 29th Ann.
Int’l Symp. Computer Architecture (ISCA ’02), 2002.

[47] D. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly
Media, Inc, 2005.

[48] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,
Transparent Operating System Support for Superpages,” Proc.
Fifth USENIX Symp. Operating System Design and Implementation
(OSDI ’02), 2002.

[49] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach Using
Superpages Backed by Shadow Memory,” Proc. 25th Ann. Int’l
Symp. Computer Architecture (ISCA ’98), 1998.

Jun Zhu received the bachelor’s degree from
the School of Computer Science at Beijing
University of Aeronautics and Astronautics, in
2006, and is currently working toward the PhD
degree in the School of Electronics Engineering
and Computer Science, Peking University. His
research interests include distributed system,
fault tolerance, operating system, and virtualiza-
tion. His recent research aims to provide fast
recovery from hardware failures and software
failures for mission-critical services.

Zhefu Jiang received the bachelor’s degree from
HuaZhong University of Science and Technol-
ogy, majoring in computer science. During his
student life, he focused on exploring system level
developing techniques, especially OS and Vir-
tualization development. Currently he is a grad-
uate student studying at the Computer Network
and Distributed System Laboratory, Peking Uni-
versity. He is also a student who shares a great
interest in open-source techniques such as Xen,
Linux, and other GNU projects.

Zhen Xiao received the PhD degree from
Cornell University in January 2001. After com-
pleting the PhD degree, he worked as a senior
technical staff member at AT&T Labs—New
Jersey and then a research staff member at IBM
T. J. Watson Research Center. Currently he is a
professor in the Department of Computer
Science at Peking University. His research
interests include cloud computing, virtualization,
and various distributed systems issues. He is a
senior member of the IEEE.

Xiaoming Li received the PhD degree in
computer science from Stevens Institute of
Technology in 1986 and has since taught at
Harbin Institute of Technology and Peking
University. Currently he is a professor at Peking
University, a vice president of Chinese Compu-
ter Federation, international editor of Concur-
rency, and associate editor of Journal of Web
Engineering (Australia). He has founded the
Chinese web archive WebInfoMall (http://

www.infomall.cn), the search engine Tianwang (http://e.pku.edu.cn),
the peer-to-peer file sharing network Maze (http://maze.pku.edu.cn),
and other popular web channels. He has published more than 100
papers, authored Search Engine Principle, Technology, and Systems
(Science Press, 2005), and received numerous achievement awards
from the Ministry of Science and Technology, Beijing Municipal
Government, and other agencies. He is a member of the Eta Kappa
Nu, and a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHU ET AL.: OPTIMIZING THE PERFORMANCE OF VIRTUAL MACHINE SYNCHRONIZATION FOR FAULT TOLERANCE 1729

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

