EFFICIENT ERROR RECOVERY FOR RELIABLE

MULTICAST

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Zhen Xiao

January 2001



© 2001 Zhen Xiao
ALL RIGHTS RESERVED



EFFICIENT ERROR RECOVERY FOR RELIABLE MULTICAST

Zhen Xiao, Ph.D.

Cornell University 2001

Multicast is an efficient mechanism for distributing data from one sender to multiple
receivers. Many applications need a reliable multicast service which is not provided
by the existing IP multicast protocol. Providing such a service on a large scale
requires efficient algorithms for error recovery.

This dissertation presents a randomized reliable multicast protocol called RRMP
which has demonstrably achieved several good properties. The protocol eliminates
message implosion by diffusing the responsibility of error recovery among all mem-
bers in the group and improves the robustness of the system against process fail-
ures. It provides good local recovery by dynamically organizing members into an
error recovery hierarchy according to their geographic locations. It optimizes buffer
management through an innovative two-phase buffering algorithm that explicitly ad-
dresses the variances in delivery latency for large multicast groups. The algorithm
reduces buffer requirements by adaptively allocating buffer space to messages most
needed in the system and by spreading the load of buffering among all members in

the group. The key idea of RRMP is to use randomization as a powerful technique



to achieve high robustness and efficiency in reliable multicast communications.

The RRMP protocol works well within the existing IP multicast framework and
does not require additional support from network routers. Both analysis and exper-
imental results show that the performance penalty due to randomization is low and

can be tuned according to application requirements.



BIOGRAPHICAL SKETCH

Zhen Xiao was born in Beijing, People’s Republic of China. He received his B.S. in
Computer Science from the Peking University in July 1996. In the fall of that year
he entered the Ph.D. program in Computer Science at Cornell University. He was

awarded an M.S. in May 1999 and graduated with a Ph.D. in January 2001.

iii



To my parents

v



ACKNOWLEDGMENTS

I am grateful to my advisor, Kenneth P. Birman, for his guidance, encouragement,
and support during my entire graduate study. He introduced me into the area of
reliable multicast and provided many valuable comments on my research. Joseph Y.
Halpern and Zygmunt J. Haas are the other two members in my committee. I want
to thank them for their efforts and kindness.

I worked with Robbert van Renesse on various problems and wish to express
my gratitude to him for many insightful discussions. Mark Hayden worked with me
during my early years at Cornell University, from whom I gained valuable experi-
ences on how to do research. I want to thank him for his knowledge and patience.
Ken Birman and Mark Hayden are among the co-authors of the Bimodal Multicast
protocol described in Chapter 3 of the dissertation.

This research was supported in part by ARPA/RADC under grant number
F30602-99-1-0532 and NSF under grant number ETA 97-03470. Any opinions, find-
ings, or recommendations presented in this dissertation are my own and do not reflect

the official views of the funding agencies.



TABLE OF CONTENTS

1 Introduction

2 Related Work

2.1 Virtual synchrony protocols . . . . . ... ... ... ... ..
2.2 Scalable Reliable Multicast Protocol . . . . .. .. ... ... ....
2.3 'Tree-based Reliable Multicast Protocols. . . . . . . ... ... .. ..
2.3.1 Reliable Multicast Transport Protocol . . ... ... ... ..
2.3.2 Log-Based Receiver-Reliable Multicast Protocol . . . . . . ..
2.3.3 Tree-based Multicast Transport Protocol . . . . . ... .. ..
2.3.4 Local Group Concept . . . . . ... .. ... ... .......
2.4 Router-assisted Reliable Multicast . . . . . ... ... .. ... ....
2.4.1 Light-weight Multicast Service . . . . . .. .. .. ... . ...
24.2 Search Party . . .. .. ... ... 00

Bimodal Multicast

3.1 Gossip-based Anti-entropy Protocol . . . . . . ... ... ... .. ..
3.2 Optimization . . . . . . .. . .. . . .
3.3 Analysis . . . . ..o
3.4 Experimental Results . . . . . . ... ... ... 0000
3.5 Conclusion . . . . . . . . .. L

RRMP: A Randomized Reliable Multicast Protocol

4.1 System Model and Assumptions . . . . . . .. ...

4.2 Details of the Algorithm . . . . . . ... ... .. .. .........

4.3 Round Trip Time Measurements . . . . . . . . .. .. .. ... ....

4.4 Optimization . . . . . . . Lo
4.4.1 Reducing Request Traffic. . . .. ... ... ... ... ....
4.4.2 Reducing Repair Traffic . . ... ... ... ... ... ....

4.5 Performance Analysis . . . . . . . .. ..o
4.5.1 TImplosion Avoidance and Robustness . . . . . .. .. ... ..

vi



4.5.2 Recovery Latency . .

4.5.3 Repair Duplication
4.5.4 Locality of Recovery

4.6 Conclusion . . . . . . . . L
5 Formation of The Error Recovery Hierarchy
5.1 Formation of Local Regions . . . . . ... ... .. ... .......
5.2 Establishment of the Hierarchy . . . ... ... ... .. ... ....
5.3 Properties of the Algorithm . . . . . . .. ... ... ... .. ...
54 Related Work . . . . . ..o oo
5.5 Conclusion . . . . . . . ...
6 Buffer Management
6.1 Optimizing Buffer Management . . . . . . ... .. ... ... ....
6.1.1 Feedback-based Short-term Buffering . . . . ... ... . ...
6.1.2 Randomized Long-term Buffering . . . . ... ... ... ...
6.1.3 Search for Bufferers . . . . . . ... ..o
6.1.4 Comparison with a Hash-based Scheme . . . . . . . .. .. ..
6.2 Simulation Results . . . . . ... ... o o000
6.3 Limitation . . . . . . . . . ...
6.4 Conclusion . . . . . . . . L
7 Simulation Results
7.1 Test Description . . . . . . . . .. . Lo L
72 Load Balance . . . . . . .. .. ... oo
7.3 Recovery Latency . . . . . . . . . ..
7.4 Repair Duplication . . . . . . .. ... Lo
7.5 Local Recovery . . . . . . . . .. .
7.6 Conclusion . . . . . . . . .. e
8 Experimental Results
8.1 Test Description . . . . . . . . .. .. Lo
8.2 Inter-region traffic. . . . . . . .. .. Lo o
8.3 Error recovery latency . . . . .. . ..o Lo
8.4 Buffer Requirements . . . . .. ... ... L0000
85 Conclusion . . . . . . . . ..
9 Conclusion and Future Work
Bibliography

vii

60
61
62
69
71
74

75
78
79
81
83
86
87
90
91

94
95
99
103
105
105
110

112
114
115
117
122
124

126

131



7.1
7.2
7.3

8.1

LIST OF TABLES

Configuration parameters for RRMP . . . . . .. ... ... ... .. 95
Link characteristics in the first set of simulations . . . . . . . .. .. 97
Link characteristics in the second set of simulations . . . . . . .. .. 98

Probability that a receiver receives no gossip message in k£ consecutive
rounds for different group sizes. . . . . . ... ..o 121

viii



2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

LIST OF FIGURES

Protocol composition in Horus. Each microprotocol has standard top
and bottom interfaces and can be stacked on top of each other like
Lego blocks. . . . . . . o .
Error recovery hierarchy in RMTP. The multicast group is divided
into three local regions with a Designated Receiver in each region. . .
Failure of a Designated Receiver. Receivers in r’s region now switch
to an upstream Designated Receiver p. . . . . . . . ... ... .. ..
Error recovery in LBRRM is provided through a two-level hierarchy
of logging servers: a primary logging server and a set of secondary
logging servers. . . . . . . . . ... e e
Replier assignment in LMS. Every router in the multicast tree selects
one of its downstream links as the replier link. A replier serves as a
representative for performing error recovery in its subtree. . . . . . .
Error recovery in LMS. On the left, every receiver in the loss subtree
sends a request to its router. Only one of them is forwarded outside
the loss subtree to the closest replier capable of repairing the loss. On
the right, this replier sends the requested message to the turning point
router, which then multicasts the message to the loss subtree.

Error recovery in Bimodal Multicast. Members in the group periodi-
cally exchange history of received messages. When r receives message
history from p, it discovers that it missed message 2 and hence solicits
a retransmission from p. . . . .. ...
Number of susceptible processes versus number of gossip rounds when
the initial multicast fails (top) and when it reaches 90% of processes
(bottom). Both runs assume 1000 processes. The scales of the two
figures are different. . . . . . ... Lo Lo
The probability for a correct process to receive a message in a par-
ticular round for groups of various sizes. Assume that the initial IP
multicast fails. . . . . . ... oL o

1X

20



3.4

3.5
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

5.1
5.2

9.3

5.4

9.5

2.6

Effectiveness of round retransmission limit on throughput at healthy
members. . .. ... . e 34
Effectiveness of multicast recovery for correlated communication failures. 35

Performance penalty in a tree-based protocol when the position of a

repair server is suboptimal. . . . . ... o000 oL oL 40
Local regions in a hierarchical structure . . . . . . . . .. ... .. .. 42
Error recovery in RRMP . . . . . .. ..o o000 45
Error recovery in a multi-level hierarchy . . . . . .. .. ... .. .. 47
Round trip time measurement to a remote member. p’'s RTT to r is:

P —t— A 48
Optimization for reducing request traffic . . . . ... .. ... .. .. 52

The probability for a member to receive a repair in a particular request
for a region of 30 members, with one member holding the message
initially. . . . . ..o 54
For large regions, the number of remote requests sent when all receivers
missed a message approximately follows a Poisson distribution with
parameter A\. The probability that £ remote requests are sent is e 56

k!
For large regions, the probability that no remote request is sent when
all receivers missed a message decreases exponentially with A. . . . . 56
Format of global session message. . . . . . ... ... ... ... ... 63

Example of upstreamness test. In this case, we have Hop(r,s) <
Hop(p, s) and Hop(p, ) < Hop(p, s). Hence r is an upstream member
of p. . . 64
Another example of upstreamness test. In this case, we have
Hop(r,s) < Hop(p, s) but Hop(p,r) > Hop(p, s). Hence r is not an
upstream memberof p. . . . .. ..o oo o oo 65
Member p selects a set of closest upstream members to be in its parent
region. The algorithm requires that p’s distance from the farthest
member in the region is at most H hops more than its distance from
the closest member. H controls the degree of heterogeneity in the

parent TeglON. . . . . . .. ...l e e 66
An example run of the algorithm to choose the parent region for mem-
ber p. . . 68

Formation of error recovery hierarchy in RRMP. The parent region of
a receiver in region 4 may contain a mixture of receivers from region
2 and receivers from region 3. . . . . ... .o oL 70



6.1
6.2
6.3
6.4

6.5

6.6
6.7

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.1

For large regions, the number of long-term bufferers for an idle message
approximately follows a Poisson distribution with parameter C.

For large regions, the probability that no member buffers an idle mes-
sage decreases exponentially with C. . . . .. .. .. ...
Search for bufferers in a local region . . . . . . ... ... ... .. ..
Effectiveness of feedback-based buffering. The z-axis is in logarithmic
scale. The figure indicates that the amount of buffering time decreases
as the initial IP multicast has reached more members. . . . . . . . ..
Comparison between the number of members which have received a
message and the number of members which buffer the message as error
recovery proceeds. The figure indicates that the number of short-term
bufferers declines rapidly when an overwhelming majority of members
have received the message. . . . . . . . . ... ...
Search time decreases as the number of bufferers increases. . . . . . .
Search time as the size of the region increases. . . . . . . ... . ...

Topology used in the first set of simulations . . . . ... ... .. ..
Comparison of request traffic received by a repair server in TRMP with
that received by the worst-case member in RRMP when the group size
INCTEASES. . . .« v v v v e e e e e e e e e
Comparison of repair traffic sent by a repair server in TRMP with
that sent by the worst-case member in RRMP when the group size
INCTEASES. . .« « v v v o e e e e e e e e e e e e e
Comparison of repair traffic sent to a lossy receiver by a repair server
in TRMP with that sent by the worst-case member in RRMP.

Error recovery latency . . . . . . .. ..o
Repair duplication . . . . . ... .. ... ... oL
Trade-off between recovery latency and repair duplication for different
valuesof A\. . . . . .
Suboptimal position of a repair server: the server is placed at the left
branch of the multicast tree in its region rather than being connected
totheroot. . . . . . . . . . L
TRMP has poor locality in error recovery when the repair servers are
placed at suboptimal positions. In contrast, a local message loss in
RRMP is always recovered locally. . . . . . . . ... ... .......

Comparison of error control traffic on wide area links between Bimodal
Multicast and RRMP in a group of 30 members spread evenly in two
local regions. . . . . . . . ...

xi



8.2

8.3

8.4

8.5

8.6

Comparison of error control traffic on wide area links between Bimodal
Multicast and RRMP when the group size increases from 8 members
to 30 members. . . . ... L
Comparison of error recovery latency between Bimodal Multicast and
RRMP in a local area network. The group consists of one sender and
one receiver. The scales on the z-axis of the two figures are different.
Comparison of error recovery latency between Bimodal Multicast and
RRMP in a group of 30 members. The scales on the z-axis of the two
figures are different. . . . . . . ..o oo 0oL
Comparison of buffer requirements between Bimodal Multicast and
RRMP in a group of 30 members in a local area network. . . . . . . .
Comparison of error recovery latency with two buffering schemes.

xii

118



Chapter 1

Introduction

Multicast is an efficient mechanism for distributing data from one sender to multiple
receivers. Instead of sending a separate copy of a message to each individual receiver,
the sender sends only one copy of the message to a multicast group. Any receiver
interested in receiving the data can join the multicast group. The IP multicast
protocol [DCY0] dynamically establishes a multicast tree from the sender to the set
of receivers. The delivery service provided by IP multicast is unreliable: there is no
guarantee that a multicast message can reach all receivers in a group. In addition,
neither the sender nor any receiver has membership knowledge about the multicast
group. Many applications, however, need a reliable multicast service. Examples
include distributed system management, collaborative computing, distribution of
software, and distributed interactive simulation (DIS). Providing such a service on a
large scale requires efficient algorithms for error recovery.

One challenge in the design of an efficient error-recovery algorithm is implosion

avoidance. As with any reliable multicast protocol, some members need to take



responsibility for detecting message loss and performing retransmission. Putting this
responsibility entirely on the sender leads to the well-known implosion problem: the
storm of acks or nacks from a large set of receivers can overflow the sender’s buffer and
congest the network near it. Consequently, some reliable multicast protocols adopt
a receiver-based reliability model in which a receiver is responsible for its correct
reception of data. A well-known example is the Scalable Reliable Multicast protocol
(SRM) [FJM*95]. In SRM, when a member detects a message loss, it multicasts
a retransmission request to the group. Any member holding a copy of the message
can multicast a reply. A randomized back-off algorithm is employed to suppress
duplicate requests and replies. More recently, Forward Error Correction (FEC) has
been proposed in several reliable multicast protocols as an efficient technique for
providing error recovery of uncorrelated loss in large multicast groups [McA90, Riz97,
NBT98]. In these protocols, the sender takes k packets from the application and
generates n encoded packets in such a way that any subset of £ encoded packets are
sufficient to reconstruct the original packets. The advantage of this approach is that
a receiver can recover from up to n — k packet losses without the need to ask for
retransmissions.

Another challenge in the design of error control algorithms is how to confine the
impact of a message loss to the region where the loss has occurred. This is especially
important when the group is large. Experimental data collected over the MBone show
that a large percentage of packets are lost by at least one receiver in large multicast
groups [YKT96, Han97|. If retransmission requests and replies are multicast to the
entire group, the network will be flooded with error control messages and a receiver

will receive multiple copies of the same message. The original SRM protocol provides



no local recovery, although recently some proposals have been made to localize the
scope of error recovery [LESZ98].

For multicast applications with only one sender, several tree-based proto-
cols have been proposed as an efficient way to avoid message implosion and to
provide good local recovery. Examples include the Reliable Multicast Trans-
port Protocol (RMTP [PSLB97]), the Log-Based Receiver-Reliable Multicast
Protocol (LBRRM [HSC95]), and the Tree-based Multicast Transport Protocol
(TMTP [YGS95]). In these protocols, receivers are grouped into local regions based
on their geographic proximity. A repair server is selected in each region and made
responsible for performing error recovery for all receivers in that region. Because a
message loss can be repaired by a regional repair server rather than by the sender,
this scheme reduces recovery latency and avoids message implosion at the sender.

If a receiver wants to perform error recovery for other receivers, it needs to buffer
received messages for a certain period of time. Designing an efficient buffer man-
agement algorithm is challenging in large multicast groups where no member has
complete group membership information and the delivery latency to different mem-
bers could differ by orders of magnitude. Buffer management strategies vary widely
in existing multicast protocols. The SRM protocol provides no buffering at the trans-
port level. Instead it relies on the application to regenerate messages if necessary
based on the concept of Application Level Framing [CT90]. In some tree-based pro-
tocols like RMTP, a repair server buffers all messages it has received in the current
multicast session on a secondary storage. This allows a receiver to dynamically join a
multicast session and still receive all messages sent in the session. However, for long-

lived sessions, the amount of buffering at a repair server could become impractically



large.

This dissertation presents our work of developing a randomized reliable multicast
protocol called RRMP in an effort to address these challenges. The RRMP protocol
has demonstrably achieved several good properties. It eliminates message implo-
sion by distributing the responsibility of error recovery among all receivers in the
group. It provides good local recovery by dynamically organizing receivers into an
error recovery hierarchy according to their geographic locations. It optimizes buffer
management through an innovative two-phase buffering algorithm that explicitly ad-
dresses the variances in delivery latency for large multicast groups. The algorithm
reduces buffer requirements by adaptively allocating buffer space to messages most
needed in the system and by spreading the load of buffering among all members in
the group. The key idea of RRMP is to use randomization as a powerful technique
to achieve high robustness and efficiency in reliable multicast communications.

The structure of the dissertation is as follows. We start with an overview of
reliable multicast protocols in Chapter 2. We study previous work on virtual syn-
chrony protocols, the scalable reliable multicast protocol (SRM), tree-based reliable
multicast protocols, and router-assisted reliable multicast protocols. The purpose of
the study is to identify a set of problems in existing error recovery algorithms and
to provide background for the remainder of the dissertation. For example, virtual
synchrony protocols provide strong reliability properties desired in settings such as
stock exchanges, air traffic control systems, hospital settings, and other critical ap-
plications. However, providing such properties entails costly communications and
limits the scalability of the protocol in large systems. This motivates our work on

the Bimodal Multicast protocol described in Chapter 3. Bimodal Multicast employs



a gossip-based anti-entropy algorithm for error recovery. Compared with traditional
virtual synchrony protocols, it achieves a weaker reliability model but has better
throughput stability. One problem with the Bimodal Multicast protocol, however,
is that it makes no use of network topology information. Consequently, the protocol
suffers from a tendency to do error recovery over potentially high latency links in
the network, which limits its scalability in wide area settings. This motivates the
design of the RRMP protocol which is the main focus of the dissertation. Chapter 4
describes the error recovery algorithm in RRMP which combines randomized error
recovery in the Bimodal Multicast protocol and hierarchical error recovery similar
to that employed by tree-based protocols. Formation of the error recovery hierar-
chy is described in Chapter 5. Chapter 6 describes the buffer management scheme
in RRMP, which adopts an innovative two-phase buffering algorithm to explicitly
address variations in delivery latency that arise in a wide area network. Chapter 7
evaluates the performance of the RRMP protocol using simulation. The results
demonstrate that RRMP achieves fast error recovery with low overhead, compared
with tree-based protocols. Chapter 8 presents experimental results of the protocol
on the UNIX platform. Chapter 9 concludes the dissertation and points out several

future research directions.



Chapter 2

Related Work

This chapter gives an overview of related work on reliable multicast protocols. It
proceeds as follows. Section 2.1 describes virtual synchrony protocols. Section 2.2
describes the scalable reliable multicast protocol. Several examples of tree-based
protocols are described in Section 2.3. Finally, Section 2.4 discusses router assistance

for reliable multicast.

2.1 Virtual synchrony protocols

The wirtual synchrony model was originally proposed in the ISIS project [BvR94,
Bir93, BJ87a, BJ87b]. ISIS supports a process group abstraction in which each
process is provided with a list of current members in the group. This is called a
view of the group. The basic idea of virtual synchrony is to create an illusion to an
application that distributed events are performed instantaneously and in lock-step,

even though the underlying communication primitives only synchronize events to the



degree that the application is sensitive to event ordering. To achieve this goal, group
membership changes (i.e. view changes) are ordered relative to ongoing multicasts.
Between two consecutive views, any two members which participated in both views
always receive the same set of messages. The group communication model in ISIS has
proven successful in several critical applications such as New York stock exchange
and French air traffic control systems. It provides reliability guarantees that are
strictly stronger than those provided by the remaining protocols described in this
chapter.

Horus [VRBM96] is a successor of ISIS that provides a flexible architecture for
protocol composition. In Horus, high-level communication protocols are implemented
using a set of microprotocols. Each microprotocol has standard top and bottom
interfaces and can be stacked on top of each other like Lego blocks. The benefit of
this architecture is to allow an application to select a set of protocols to match its
specific requirements without having to pay overhead for properties that it does not
need. Figure 2.1 shows an example of protocol composition in Horus.

Ensemble [Hay98] is a successor of Horus and is written in a functional program-
ming language called OCAML [Ler00]. Similar to Horus, Ensemble is extensively
layered and highly reconfigurable. In addition, the use of functional programming
language makes the system amenable to formal verification and optimization. The
Bimodal Multicast protocol described in Chapter 3 was originally implemented as a
protocol layer in Ensemble. The author has participated in the development of the
Ensemble system.

Examples of other group communication systems include Transis [ADKM92],

Totem [AMMS™95], and Rampart [Rei94].



= e a———
TOTAL TOTAL
FC
MBRSHIP = &=
FRAG CRYPT
NAK
CRYPT
STABLE
COM

Figure 2.1: Protocol composition in Horus. Each microprotocol has standard top
and bottom interfaces and can be stacked on top of each other like Lego blocks.

2.2 Scalable Reliable Multicast Protocol

The Scalable Reliable Multicast Protocol (SRM) adopts a receiver-based reliability
model in which a receiver is responsible for its correct reception of data [FIJM™95].
Reliability of this protocol is provided through collaboration of all receivers in the
multicast group. SRM achieves good fault tolerance by multicasting retransmission
requests and responses to the whole group. A randomized back-off algorithm is
employed to suppress duplicate requests and replies. In this protocol, when a receiver
detects a message loss, it waits a random amount of time before sending a request.
The random delay period depends on its distance from the sender. The closer a
receiver is from the sender, the more likely it will multicast a retransmission request.
Hence if several receivers in the group all missed the same message, a receiver close to
the point of message loss is likely to multicast the request first. If a receiver receives a

request for the same message while it is waiting, it performs an exponential back-off



and resets its request timer. Any member holding a copy of the message can multicast
a repair. In order to suppress duplicate repair messages, a receiver waits a random
amount of time before sending a repair. The random delay period is determined by
its distance from the sender of the request message. If it receives a repair for the
same message while it is waiting, it cancels its own repair. A receiver measures its
distance from other receivers through periodic exchange of session messages among
all receivers in the group. Session messages are also used to detect the loss of the
last message in a burst.

In the ideal case, a message loss will trigger a single request immediately down-
stream of the point of message loss in the underlying multicast tree and a single
repair immediately upstream of the point of loss. However, due to the randomized
nature of the algorithm, it is possible for a message loss to trigger multiple requests
and repairs, leading to redundant error control traffic.

Several researchers have discovered performance problems with the SRM proto-
col [BHO'99, PPV98, PSLB97]. One of them is so-called the crying baby problem.
In SRM, retransmission requests and replies are always multicast to the entire group.
Hence if some receiver in the group has a much higher loss rate than others (such as
a receiver behind a slow modem link), it will cause the network to be flooded with
error control messages. A correct receiver may receive multiple copies of the same
message. Recently some proposals have been made to localize the scope of error re-
covery in SRM [LESZ98, SEFZ98]. Another problem with the SRM protocol is that
its randomized back-off algorithm, although helpful in avoiding message implosion,

may increase error recovery latency.



10

2.3 Tree-based Reliable Multicast Protocols

For multicast applications with only one sender, several tree-based protocols have
been proposed as an efficient way to avoid message implosion and to provide good
local recovery. In these protocols, receivers in the group are organized into an error
recovery tree based on their geographic proximity. A receiver missing a message
contacts its parent in the tree for retransmission. Protocols in this category differ in
how the error recovery tree is formed and how retransmission requests and repairs are
sent. In the following we describe some best-known examples of tree-based protocols:

RMTP [PSLB97], LBRRM [HSC95], TMTP [YGS95], and LGC [Hof97].

2.3.1 Reliable Multicast Transport Protocol

The Reliable Multicast Transport Protocol (RMTP) was originally designed for bulk
data transfer [PSLB97], such as file transfer from a central server to a set of reposito-
ries. In this protocol, receivers are organized into local regions. In each local region,
a Designated Receiver is selected to process acknowledgments from receivers in its
region and to retransmit lost messages. When a receiver joins the group, it selects
one of the Designated Receivers as its ACK Processor. Figure 2.2 shows an exam-
ple where the multicast group is divided into three local regions. Each region has a
Designated Receiver. When a Designated Receiver receives an acknowledgment from
a receiver in its region, it identifies the set of messages that are lost. It is possible
that several receivers missed the same message. For better efficiency, a Designated
Receiver retransmits a message in unicast if the number of requests it received is

smaller than some threshold. Otherwise it sends the message in multicast. Because



11

a message loss can be recovered locally by a Designated Receiver rather than by the
sender, this scheme reduces recovery latency and avoids message implosion at the
sender. If a Designated Receiver itself misses a message, it gets a retransmission
from its upstream Designated Receiver. RMTP allows a receiver to dynamically
join a multicast session and still receive all messages sent in the session. To achieve
this goal, each Designated Receiver buffers the entire set of messages in a secondary

storage.

@ Router @ Receiver g Designated -  ACK
Receiver

Figure 2.2: Error recovery hierarchy in RMTP. The multicast group is divided into
three local regions with a Designated Receiver in each region.

The error recovery hierarchy in RMTP is static. It assumes that there is some
application-level information about the geographic locations of receivers in the group.
Based on this information, specific machines are chosen as Designated Receivers and
are statically organized into a tree. Each Designated Receiver announces its presence

by sending a SEND_ACK_TOME message down the multicast tree periodically. The



12

TTL field of the message is set to a pre-determined value. When a receiver receives
SEND_ACK_TOME messages from several Designated Receivers, it chooses the most
upstream Designated Receiver (in terms of hop counts) as its ACK Processor. Ro-
bustness of the protocol is achieved through soft-state timers. For example, if a
receiver has not received SEND_ACK_TOME message from its Designated Receiver
for some period of time, it may conclude that the Designated Receiver has failed.
In this case, it switches to the Designated Receiver least upstream from the failed
Designated Receiver as its new ACK Processor. Figure 2.3 shows a situation where
one of the Designated Receivers, r, crashes. All receivers in r’s region now send
acknowledgments to an upstream Designated Receiver p. This, however, may lead
to certain performance problems because message loss is no longer recovered locally.

We will talk more about performance problems in tree-based protocols in Chapter 4.

r crashes

@ Router @ Receiver A Designated —>» ACK
Receiver

Figure 2.3: Failure of a Designated Receiver. Receivers in 7’s region now switch to
an upstream Designated Receiver p.



13

2.3.2 Log-Based Receiver-Reliable Multicast Protocol

The Log-Based Receiver-Reliable Multicast Protocol (LBRRM) was designed for
distributed interactive simulation [HSC95]. Applications in this category have rel-
atively low update rates. However, once an update has occurred, receivers need
to be notified of the update within short delay, even if the network may be lossy.
This requires an efficient algorithm to detect a message loss and recover from it.
To achieve this goal, each sender periodically multicasts a heartbeat message that
includes the largest sequence number it has transmitted. In order to reduce the
amount of network bandwidth consumed by heartbeat messages, LBRRM proposes
a variable rate heartbeat scheme in which heartbeat messages are transmitted more
frequently immediately after a data message. More specifically, when a sender first
transmits a message, it initializes the interval between two heartbeat messages to a
small value hp,in. This interval is doubled every time a heartbeat message is sent until
it reaches a maximum limit A, ,,. When the sender transmits another data message,
it immediately resets the interval to hn;,. Compared with a fixed heartbeat scheme
in which heartbeat messages are distributed evenly across time, this technique has
low overhead while still providing fast loss detection.

Reliability of the protocol is achieved through a two-level hierarchy of logging
servers: a primary logging server and a set of secondary logging servers. Receivers
in the group are organized into sites based on their geographic locations. A site
is a localized part of the network, similar to a local region in the RMTP protocol.
Each site has a secondary logging server. When a receiver detects a message loss, it
requests a retransmission from its secondary logging server. If a secondary logging

server misses a message, it contacts the primary logging server for retransmission.



14

The multicast sender only performs error recovery for the primary logging server.

Figure 2.4 illustrates the error recovery hierarchy in LBRRM.

@‘—i primary

" T\@

s EE E b de
Q receiver @ sender Ej logging server —» request

Figure 2.4: Error recovery in LBRRM is provided through a two-level hierarchy of
logging servers: a primary logging server and a set of secondary logging servers.

LBRRM uses a statistical acknowledgment scheme to estimate the dissemination
status of a data message and then decides whether to send the retransmission in

unicast or multicast. Like RMTP, the error recovery hierarchy in LBRRM is static.

2.3.3 Tree-based Multicast Transport Protocol

The Tree-based Multicast Transport Protocol (TMTP) was designed for interactive
collaborative applications [YGS95]. In this protocol, receivers are organized into a
hierarchy of subnets or domains. In each domain, a domain manager is selected
to perform error recovery for group members within its domain as well as for some

downstream domain managers. Unlike RMTP and LBRRM, the error recovery tree in



15

TMTP is dynamically formed based on expanded ring search. More specifically, when
a domain manager first joins the group, it multicasts a SEARCH_FOR_PARENT
message with a small TTL value. If no response is received after a certain period of
time, it re-multicasts the message with a larger TTL value. This process repeats until
it receives a WILLING TO_BE_PARENT message from an existing domain manager
in the error recovery tree. There is, however, a trade-off between parent search time
and bandwidth consumption. If the increase in TTL value is small during each
try, the search process may take a long time when the group is sparse. On the other
hand, if the TTL increase is large, bandwidth may be wasted for search and response
messages. In addition, in this protocol, a new domain manager always chooses the
closest existing domain manager as its parent, even if the parent is downstream in
the underlying multicast tree. This may increase error recovery latency.

Retransmission requests and repairs in TMTP are always sent in multicast. Two
optimizations are proposed to reduce bandwidth overhead due to error control mes-
sages. First, each domain manager keeps track of the TTL value to the farthest
member in its domain. This is called the multicast radius. A domain manager keeps
its members updated with the current multicast radius. When a receiver detects a
message loss, it multicasts a negative acknowledgment with a TTL value equal to
its multicast radius. Upon receipt of the nack, its domain manager multicasts the
corresponding message with a TTL equal to the multicast radius.

It is possible that multiple receivers in a region detect a message loss at the same
time. The second optimization proposed in the paper is to use randomized back-off
to suppress duplicate multicasts: when a receiver detects a message loss, it waits a

random amount of time before multicasting a nack. If it hears a nack from another



16

member in its domain for the same message when it is waiting, it suppresses its
own nack. This scheme is similar to the randomized back-off scheme in the SRM
protocol. However, the back-off period here is proportional to the size of the local

domain rather than to the size of the entire multicast group.

2.3.4 Local Group Concept

Local Group Concept (LGC) is a multicast algorithm that organizes receivers into a
hierarchy of Local Groups [Hof97]. In each local group a Group Controller is selected
and made responsible for processing acknowledgments for all receivers in that group.
Message losses are recovered within a local group first. A Group Controller requests
retransmissions from its upstream Group Controller if local recovery is not successful.

There are three types of acknowledgments in LGC: positive acknowledgment,
negative acknowledgment, and semi-negative acknowledgment. A Group Controller
sends a positive acknowledgment when all receivers in its local group have received
the message. This indicates to the sender or a higher-level Group Controller that it
is safe to discard the message. A Group Controller sends a negative acknowledgment
if the entire local group missed the message. This indicates to the sender that a
retransmission is needed. A Group Controller sends a semi-negative acknowledgment
when some, but not all, receivers in the group have received the message. Since a
message loss is recovered within a local group first, the sender does not need to
retransmit the message at this moment. However, the sender cannot release the
message either: if the Group Controller crashes, receivers in its local group should
still be able to get the message directly from the sender.

LGC can be configured to operate in two modes: a delay-sensitive mode or a



17

load-sensitive mode. The choice reflects a trade-off between network traffic and error
recovery latency. In the delay sensitive mode, when a Group Controller receives a
retransmission request, it immediately multicasts the requested message in its local
group. In contrast, in the load sensitive mode, a Group Controller records the number
of requests received for that message during a predefined time interval. If this number
exceeds a certain threshold, it retransmits the message in multicast. Otherwise the
message is sent in unicast.

The hierarchy of local groups is constructed through a Dynamic Configuration
Service. In this protocol, a Group Controller periodically announces its presence by
multicasting a LG_ADVERTISE message. The message contains the smoothed error
probability of the Group Controller, the number of receivers in the local group, and
the initial TTL value of the message!. A Group Controller dynamically changes the
scope of its advertisement messages by choosing different TTL values. A receiver
estimates its hop counts from its Group Controller to be the smallest T'TL value
of all advertisement messages it has received during a predefined time interval. A
receiver maintains information about all Group Controllers it has heard from recently
and selects the most appropriate one to process its acknowledgments. LGC does not
propose a specific metric to measure appropriateness. Rather this decision is left to
the application. One possibility is to select the closest Group Controller (in terms
of hop counts) as previously done in the RMTP protocol. However, for certain
applications a receiver may want to select the Group Controller which has the lowest
error probability. It is also possible to consider a combination of several metrics.

If a receiver cannot find an appropriate Group Controller (e.g. all existing Group

Tt may also contain other information required by the application (e.g. carrier
fees, security options).



18

Controllers are too far away), it may establish a new local group and elect itself as
the Group Controller. Soft state timers are used to detect Group Controllers that

have crashed or left the group.

2.4 Router-assisted Reliable Multicast

Recently several proposals have been made that extend the existing IP multicast
service by providing new functionalities at routers. The motivation is that many
of the difficulties in the design of reliable multicast protocols for large networks are
due to lack of topological information about the underlying multicast tree. Such
information is deliberately hidden in the IP multicast model. With assistance from
network routers, reliable multicast protocols can achieve better performance and
scalability. In the following, we examine two examples of router-assisted schemes:

LMS [PPV98] and Search Party [CM99].

2.4.1 Light-weight Multicast Service

LMS extends the IP multicast service model with a new set of forwarding services to
provide a more refined form of multicasting. In LMS, every router in the multicast
tree selects one of its downstream links as the replier link?. A receiver connected to
a replier link is called a replier and serves as a representative for performing error
recovery in its subtree. Figure 2.5 shows an example of the replier assignment.

When a receiver detects a message loss, it sends a request to its router. Upon

2There are two exceptions. First, if a router has only one downstream link, it
selects the upstream link as the replier link. Second, if a router is adjacent to the
multicast sender, it selects the sender link as its replier link.



19

@ Receiver A Replier @ Router

Figure 2.5: Replier assignment in LMS. Every router in the multicast tree selects
one of its downstream links as the replier link. A replier serves as a representative
for performing error recovery in its subtree.

receipt of the request, the router checks whether it is from its replier link. If so,
the request is forwarded upstream. Otherwise the request is forwarded to the replier
link. When a router forwards a request from a non-replier link to its replier link, it
inserts into the request its address and the identifier of the link on which the request
arrived. This router is called the turning point of the request. Each request can have
only one turning point. The nice property of this forwarding rule is that when all
receivers in a subtree miss a message, only one request is sent upstream, even though
no receiver in the subtree knows exactly where the loss has occurred.

When a replier receives a request, it checks whether it has the message. If it
does not have the message, it ignores the request. Otherwise it sends a reply that
contains the message and the link identifier carried in the request to the router at
the turning point. When the router receives the reply, it multicasts the message to
the subtree rooted at the specified link. This is called a directed multicast. Figure 2.6

illustrates the error recovery process in LMS. On the left, every receiver in the loss



20

subtree sends a request to its router. Only one of them is forwarded outside the loss
subtree to the closest replier capable of repairing the loss. On the right, this replier
sends the requested message to the turning point router, which then multicasts the

message to the loss subtree.

message loss

@ Receiver A Replier =~ —— Request @ Receiver A Replier =~ —— Repair

Figure 2.6: Error recovery in LMS. On the left, every receiver in the loss subtree
sends a request to its router. Only one of them is forwarded outside the loss subtree
to the closest replier capable of repairing the loss. On the right, this replier sends the
requested message to the turning point router, which then multicasts the message to
the loss subtree.

It is interesting to compare the error recovery hierarchy in LMS with that in
RMTP. A replier in LMS is similar to a Designated Receiver in RMTP. Both of
them serve as representatives for error recovery in a local region. However, the error
recovery tree in RMTP is built at the transport layer and may not correspond well
to the underlying multicast tree. With additional support from routers, LMS can

have better control of error recovery traffic.



21

2.4.2 Search Party

Search Party is an error recovery protocol based on a new forwarding service
called randomecast, which forwards packets randomly inside a multicast distribution
tree [CM99]. In this protocol, when a receiver ¢ detects a message loss, it sends a
request in a randomcast packet to its parent node p in the multicast tree. Upon
receiving the packet, p makes a random choice to decide whether to forward the
packet to its parent or to another child. The probability of forwarding to p’s parent
is weighted by the number of leaves in the subtree under c. This, however, requires
a router to keep track of the subtree population below each downstream link.
Should p decide to forward the packet to another child, it inserts sufficient infor-
mation into the packet to address the subtree below the arrival interface. This allows
the recipient of the request to send the repair message in a directed multicast that
restricts its scope to the subtree rooted at the arrival link, an idea previously used in
the LMS protocol. A receiver missing a message keeps sending requests as a Poisson
process until a repair arrives. In effect, all receivers missing the message conduct

random search inside the multicast tree. Hence comes the name Search Party.



Chapter 3

Bimodal Multicast

Critical applications require detailed knowledge about the behavior of their systems
under various operational conditions. Some of these applications also produce a
stream of data that needs to be delivered at a steady rate. For example, in an air
traffic control setting, periodic updates to radar images and flight tracks need to be
communicated to a group of controllers in a timely manner. Stability in message
delivery is essential to safe operation.

Traditionally, multicast protocols designed for such applications provide strong
reliability properties such as atomicity (if a multicast is delivered to any correct pro-
cess, eventually it will be delivered to all correct processes), total ordering delivery,
and virtual synchrony. Providing these properties entails costly protocols and may
trigger erratic throughput in demanding environments.

This chapter describes a new approach to reliability for critical applications: a Bi-
modal Multicast protocol [BHO'99] that has superior scalability and strong through-

put properties. Unlike virtual synchrony protocols that provide an “all or nothing”

22



23

guarantee, Bimodal Multicast protocol provides a bimodal delivery guarantee: for
any multicast message sent to the group, there is a high probability that the message
will reach almost all members, a small probability that the message will reach a small
number of members, and a vanishingly low probability that the message will reach
many but not all members. Experimental results demonstrate that the protocol
achieves steady throughput even when failures occur.

The rest of the chapter is organized as follows. Section 3.1 describes the error
recovery algorithm in Bimodal Multicast. Section 3.2 describes two optimizations of
the basic algorithm that improve its performance under network failures. Section 3.3
analyzes the performance of the protocol using formal methods. Experimental results

are presented in Section 3.4. Section 3.5 concludes.

3.1 Gossip-based Anti-entropy Protocol

Bimodal Multicast employs a gossip-based anti-entropy protocol for error recovery.
The idea of gossip was previously used in epidemic algorithms to disseminate up-
dates in a distributed database environment [OD81, DGH*87]. More recently, van
Renesse et al. proposed a failure detection service using the random gossiping tech-
nique [vVRMH98]. Other work on gossip protocols include [LOM94, For95, LLSG92,
GT92|.

The protocol proceeds through a series of rounds. The length of each round must
be larger than the round trip time between any two members in the group. In the
current implementation, a round starts every 100ms. During each round a member p

sends its history of received messages to a randomly selected member ¢ in the group.



24

This message is called a gossip message. Upon receiving the message history, ¢ asks
p for any message that ¢ missed but p has received so that p and ¢ can converge to
identical histories. Figure 3.1 illustrates this process in a group of four members, one
of which is the sender. The sender multicasts a series of messages unreliably to the
group. Member r missed message 2. During the subsequent gossip round, p sends
a summary of its received messages to 7 (the gossip message). Upon receipt of the
summary, r discovers that it has missed message 2 and then solicits a retransmission
from p.

If a member discovers that it has missed several messages, it solicits the most
recent message first. For example, if member r missed messages 1, 2, 3, and 4, it
would request a retransmission of message 4 first, followed by messages 3, 2, and
1. Hence the protocol emphasizes achieving a common suffix of message history
rather than a common prefix. For applications where data are periodically refreshed
(e.g. stock quotes in a stock market environment), new messages are usually more
important than old messages.

After a member receives a message, it buffers the message for a fixed number
of rounds and then garbage collects the message. In the current implementation,
a member garbage collects a message 10 rounds after its initial reception. Because
of the “most-recent-first” retransmission strategy and the randomized nature of the
algorithm, it is possible that a message is still missing at some member but has
been garbage collected everywhere else. If a member cannot recover a message loss
after a certain amount of time, it gives up on the message and reports the loss to
the application. Hence the protocol is suitable for applications that have a strong

emphasis on stable throughput but can tolerate infrequent message loss.



25

sender
)4 q r s

msg 1

msg 2
Time &

msg 3 \

i St su Sump, ry (1:23)
anti-entropy ary (15, 3 Mmary, a 23 ary, 3, summary

So\'\C“mﬁO“ /

\ re

Figure 3.1: Error recovery in Bimodal Multicast. Members in the group periodically
exchange history of received messages. When r receives message history from p, it
discovers that it missed message 2 and hence solicits a retransmission from p.



26

3.2 Optimization

There are several optimizations of the basic gossip protocol that aim to improve
its performance under network failures. This section describes two such optimiza-
tions. Their effectiveness is evaluated in Section 3.4. A complete description of all
optimizations can be found in [BHO199].

Optimization I: Round Retransmission Limit. This optimization restricts the
maximum amount of data a process will retransmit in any given round. As soon
as a process has reached the limit, it ignores subsequent solicitations until the next
round. This avoids a situation where a poorly performing process puts a heavy load
on a healthy process by swamping it with retransmission requests. If a process has
fallen far behind the group, the load of error recovery for this process will spread
across several rounds among different processes.

Optimazation II: Multicast for Some Retransmissions. In the basic gossip proto-
col, a process always sends a retransmission in unicast. However, this may incur a
high error recovery latency for system-wide message loss. In the extreme case where
the sender experienced a send omission failure, only the sender holds a copy of the
message initially. All other receivers need to recover the message loss through the gos-
sip protocol. Epidemic theory shows that the expected time for a receiver to recover a
message loss in this case is proportional to the log of the group size [Pit87, DGH*87].
Better efficiency can be achieved if a process uses a mixture of unicast and multi-
cast for retransmissions. In this optimization, a receiver keeps track of the number
of retransmission requests it has received for a message. If this number exceeds a

prespecified threshold, it multicasts the retransmission to the entire group. The fact



27

that many requests for a message have been received is a good indication that the

initial IP multicast failed.

3.3 Analysis

In this section, we analyze the performance of the protocol using formal methods.
We compute the distribution of latency between when a message is sent and when
it is delivered. For our analysis, we consider just a single multicast message in a
group with a fixed set of processes. These processes communicate with each other
over a fully connected, point-to-point network. Initially one process multicasts the
message unreliably to the whole group. This message is received by a random subset
of processes. These processes include information about this message in subsequent
gossip messages they send. Each process independently chooses the destination for
its gossip message uniformly at random from all other processes in the group. For
simplicity, we combine solicitations and retransmissions into a single gossip message.

The protocol executes in a series of rounds in which messages sent in the current
round are delivered in the next. We consider two types of failures in the analysis:
process failures and message failures, both benign in nature. There is an independent
probability of at most 7 that a process crashes during one round. There is also an
independent, per-process probability of at most € that a gossip message sent between
nonfaulty processes is lost in the network. Since the failure of a gossip message
implies either the failure of the solicitation or the failure of the retransmission, 1 — ¢
is the probability that the message gets through back and forth. In practice we expect

both € and 7 to be small. We assume that message failures and process failures are



28

independent of each other. We do not consider Byzantine failures.
In the following analysis we derive a recurrence relation showing how the number
of processes that have yet to receive a copy of the message decreases over time. We

define the following parameters:
N : the number of processes in the system.

€o : the independent probability that a correct process (other than the sender) does

not get a message during its initial multicast.
(. the probability that a process gossips to every other process.

s; : the number of processes that may gossip in round ¢ (or in epidemic terminology

the infectious processes).

r¢ : the number of processes in round ¢ that have not received a gossip message yet

(the susceptible processes).

Since the sender always has a copy of the message, initially we have:

So = 1+(N—1)(1—60)

o = (N — ]_) - €
€p = 1.0 corresponds to the case where the initial multicast fails and only the sender
has a copy of the message at the outset. In this case, we have: sy =1 and rg = N—1.

Given s; and r;, we derive a recurrence relation for s;,; and ry1. First we assume

that processes do not crash. We introduce constants

p = B-(1—¢

g = 1-p



29

p is the probability that both an infectious process gossips to a particular susceptible
process and that the message gets through. For each of the r; susceptible processes,
we consider the probability that at least one of the s; infectious processes sends a
gossip message that gets through. Expressed differently, this is the probability that

not all infectious processes fail to send a message to a particular susceptible process:
- (l-p)" =1-g¢"
Let k be the expected number of newly-infected processes in round ¢t. We then have

k = ’I't'(]_—qst)
Str1 = 8t+k

e = T —k

Now we introduce process failures into the analysis. There is an independent, per
process probability of 7 that a process has a crash failure during one round of the
protocol. There are three ways in which processes can fail. They can crash before,
during, or after the gossip stage of the Bimodal Multicast protocol. Here we are
investigating the relationship between the number of susceptible processes and the
number of gossip rounds. The worst case occurs when all faulty processes crash before
the gossip stage. In this case the probability for a susceptible process to receive a
gossip message is equivalent to the case where there were s;- (1 —7) correct processes
gossiping at the beginning of the round. Similarly, we can relax the message failure
rate to be anywhere in the range of [0..€], but the worst case occurs when the failure

rate is e. We now have:

s = sx(l—1)



30

re = rpx(1—71)
E = rx(1—q%)
Si+1 = S+ k

Tipr = Tp—k

Let N = 1000, 3 =1/(N — 1) (only gossip to one other process), 7 = 0.001, and
e = 0.05. Figure 3.2 shows how the number of susceptible processes decreases as a
function of the number of gossip rounds. The top figure shows the case where the
initial IP multicast fails (i.e. ¢y = 1.0). The bottom figure shows the case where the
initial IP multicast reaches 90% of the processes (i.e. €g = 0.1). The scales of the
two figures are different.

Now we continue the above analysis to compute the expected number of rounds

before a selected correct participant receives a multicast. Define:

vy ¢ the probability that a susceptible process gets infected up to round t.

wy = the probability that a susceptible process gets infected in round ¢.

Observe that in any given round all the currently susceptible processes have equal

probability of getting infected. We have:

Tt
vy = 1——
N
w = M
Wy = Vg — V-1

From this we are able to produce Figure 3.3 (assume that the initial IP multicast

fails), showing the probability for a correct process to receive a message in a certain



31

1000

900

800

7001

600

5001

400

# susceptible processes

3001

2001

1001

0 2 4 6 8 10 12 14 16 18 20
#rounds

# susceptible processes

#rounds

Figure 3.2: Number of susceptible processes versus number of gossip rounds when
the initial multicast fails (top) and when it reaches 90% of processes (bottom). Both
runs assume 1000 processes. The scales of the two figures are different.



32

round. The figure superimposes curves for various values of N. They have roughly
the same shape with peak at roughly the log of the group size.

25

— N=16

-- N=128
O N=1024
20
*15¢
2
5
©
8
S10-
5k
@]
0 ~-. @ .0 D

Figure 3.3: The probability for a correct process to receive a message in a particular
round for groups of various sizes. Assume that the initial IP multicast fails.

3.4 Experimental Results

This section presents experimental results of the Bimodal Multicast protocol on a
local-area network. The tests are conducted in a group of 35 processes connected by
10Mbit Ethernet. One of them is the sender. The sender is sending 1K byte mes-
sages at a rate of 100 messages per second. Messages are delivered to the application
in FIFO order. We design two sets of experiments to explore the impact of the two
optimizations described in Section 3.2. The first optimization puts a limit on the
amount of data a process will retransmit in any given round. In the following experi-

ment, this limit is set to 10K bytes. Since each message is 1K bytes, this restricts the



33

maximum number of retransmissions to 10 messages. To test the effectiveness of this
optimization, we introduce a burst of message loss every 20 seconds by letting 30% of
the processes simultaneously discard 50 consecutive messages. These processes will
solicit retransmissions during subsequent gossip rounds. We measure the impact of
this perturbation on a healthy receiver. The results are shown in Figure 3.4.

As can be seen from the figure, without the round retransmission limit (the top
figure), the perturbation we introduced caused periodic fluctuation in throughput.
This is because receivers lagging behind tried to catch up on all the lost messages
at once and hence put a heavy load on healthy receivers. In contrast, with the
optimization (the bottom figure), throughput at a healthy receiver is fairly steady.
There is, however, a trade-off between the performance of healthy receivers and that
of perturbed receivers. On one hand, imposing a round retransmission limit can
protect healthy receivers from being dragged behind by perturbed receivers. On the
other hand, a perturbed process will have more trouble catching up. For certain
applications, maintaining steady throughput at healthy receivers is more important.

The second optimization described in Section 3.2 involves using multicast recovery
for correlated communication failures. In the following experiment, the multicast
threshold is set to 2. That is, the second time a receiver gets a request for a message,
it multicasts the message in the group. To test the effectiveness of this optimization,
we introduce a burst of system-wide message loss every 20 seconds by emulating
send omission failures at the sender for 10 consecutive messages. We measure the
throughput at one receiver to see the impact of different retransmission strategies.
The results are shown in Figure 3.5.

When retransmissions are always sent in unicast (the top figure), the throughput



34

150

140} ]

#msgs/sec)

= 100}

Throughpu

801 1

60 7

50 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

(a) Without Round Retransmission Limit

150

140} ]

90 7

801 1

70f ]

60 7

50 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

(b) With Round Retransmission Limit

Figure 3.4: Effectiveness of round retransmission limit on throughput at healthy
members.



35

200

180 b

Throughput (#m
[00)
o

[o2]
o
T
I

20 7

0 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

(a) Without multicast retransmissions

150

140} ]

Throughput

801 1

60 7

50 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

(b) With multicast retransmissions

Figure 3.5: Effectiveness of multicast recovery for correlated communication failures.



36

demonstrates periodic fluctuation each time a send omission failure occurs. This is
due to the long error recovery time: in order to achieve FIFO order delivery, subse-
quent messages are held up in a receiver’s buffer and then delivered to the application
in bursts. In contrast, the throughput is very stable when a mixture of unicast and
multicast is used for retransmissions (the bottom figure). These results demonstrate
that selective use of multicast for retransmissions can significantly reduce error re-

covery time when the initial IP multicast fails.

3.5 Conclusion

Stable throughput is a desirable property for applications that require high perfor-
mance and scalability. This chapter has described a Bimodal Multicast protocol
developed in part by the author that uses random gossiping technique to achieve
strong throughput guarantees. Both analysis and experimental results demonstrate
that the protocol has good performance in demanding environments.

Although Bimodal Multicast emerged from a group effort, this chapter focuses
on aspects for which the author was the primary contributor. This includes the
multicast retransmission strategy described in Section 3.2, the analysis of delivery
latency in Section 3.3, and the experimental results presented in Section 3.4. A

complete description of the protocol can be found in [BHO™99].



Chapter 4

RRMP: A Randomized Reliable

Multicast Protocol

For multicast applications with only one sender, several tree-based protocols have
been proposed as an efficient way to avoid message implosion and to provide good
local recovery'. In these protocols, receivers are grouped into local regions based
on their geographic proximity. A repair server is selected in each region and made
responsible for performing error recovery for all receivers in that region. Because a
message loss can be repaired by a regional repair server rather than by the sender,
this scheme reduces recovery latency and avoids message implosion at the sender.
Some examples of tree-based protocols are described in Chapter 2.

However, we also discovered several performance problems with a tree-based pro-
tocol. The first problem is that a tree-based protocol does not eliminate message

implosion. Although it avoids global message implosion at the sender, each region

!Multiple senders can be supported by building a separate error recovery tree for
each sender.

37



38

still suffers from a regional implosion problem because the responsibility of error
recovery in each region is concentrated on a single repair server. For large regions,
a repair server may be overwhelmed with retransmission requests when all receivers
in its region miss a message. One way to reduce the load on a repair server is to
put a limit on the size of a local region. If a region becomes too large, it is split
into several small ones. This approach is effective if all receivers in the region have
roughly the same loss rate. Otherwise a single receiver suffering a high loss rate can
put a heavy burden on its repair server even after the split and may affect all other
receivers in its region. In Chapter 7 we quantify the problem of load concentration
on repair servers using simulation.

The second problem with a tree-based protocol is that the failure of a repair
server can lead to a disruption of service in its region. Because a repair server
is the only process capable of performing error recovery for a local region, if the
server fails, error recovery in its region cannot proceed until a new server is selected.
Some tree-based protocols use soft-state timers to enhance robustness. In RMTP,
for example, if a receiver has not heard from its repair server for a certain period of
time, it concludes that the server has failed and switches to the server least upstream
from the failed server as its new repair server. This is illustrated in Figure 2.3 of
Chapter 2. We feel that this is not a perfect solution for two reasons. First, failure
detection in a distributed environment is a difficult problem in its own right. In
practice, many systems use a conservative timer to avoid false alarms. Before the
failure of a repair server is detected, receivers in its region may continue sending
retransmission requests to this failed server. Second, switching to a repair server

in an upstream region defeats the purpose of building an error recovery hierarchy



39

because message loss is no longer recovered locally. Relying on a repair server in a
remote region not only introduces extra traffic on wide area links but also increases
error recovery latency.

The third problem with a tree-based protocol is that its performance depends on
the positions of repair servers. To maximize the possibility of local recovery, a repair
server should experience the least amount of message loss among all receivers in its
region. Hence the optimal position of a repair server is at the root of the multicast
subtree of its region. However, the topological structure of the underlying multicast
tree can change dynamically due to various network conditions and is generally not
known at the transport layer. Improper positioning of repair servers can lead to poor
locality in error recovery. Figure 4.1 shows a situation where the repair server ¢ in
one local region is placed at the left branch of the multicast subtree in its region
rather than at the root. A message loss along the indicated link causes all receivers
at the left branch (including the repair server) to miss the message. Ideally, this loss
can be repaired by the two local receivers at the right branch of the tree. However,
in a tree-based protocol like RMTP, the repair server will request a retransmission
from its upstream repair server p outside this local region, leading to long recovery
latency?.

In this chapter, we propose a randomized reliable multicast protocol called RRMP
which eliminates the message implosion problem and provides good local recovery.
This protocol is built on our previous work with the Bimodal Multicast protocol
described in Chapter 3, but focuses on how to use randomization to improve the

robustness and efficiency of tree-based protocols. A detailed comparison between

2A similar problem can happen even if the repair server is at the root of the tree,
because the server can miss a message due to a local buffer overflow.



40

message loss

@ Router @ Receiver A Repair server > Request

Figure 4.1: Performance penalty in a tree-based protocol when the position of a
repair server is suboptimal.
RRMP and Bimodal Multicast is deferred to Chapter 8 so that sufficient background
can be established. This protocol has been described in part in [XB01la, XB01b].

RRMP groups receivers into a hierarchy, similar to the tree-based protocols. Un-
like those protocols, RRMP lets each receiver that experiences a message loss send
its request to randomly selected receivers in its local region and, with a small prob-
ability, to some randomly selected receiver in a remote region. The reliability of
the protocol depends on statistical properties of its randomized algorithm which can
be formally analyzed and tuned according to application requirements. Simulation
results in Chapter 7 demonstrate that the protocol achieves fast error recovery with
low overhead, compared to tree-based protocols.

The rest of the chapter is organized as follows. Section 4.1 describes the system

model and assumptions made in the protocol. Section 4.2 describes the details of



41

the error recovery algorithm. Section 4.3 presents a scheme for measuring round trip
time between receivers in the group. Section 4.4 describes two optimizations of the
basic algorithm to reduce error control traffic. Section 4.5 analyzes its performance.

Section 4.6 concludes.

4.1 System Model and Assumptions

We consider multicast applications with only one sender. The sender joins the mul-
ticast group before it starts sending messages, and consequently is also a receiver in
the group. We assume that receivers are grouped into local regions and that different
regions are organized into a hierarchy according to their distance from the sender.
We call this the error recovery hierarchy. Figure 4.2 shows an example of a hierarchy
where the whole group is divided into three local regions. Chapter 5 describes an
algorithm for constructing such a hierarchy. We define the parent region of a receiver
as its least upstream region in the hierarchy®. For example, in Figure 4.2, region 1
is the parent region for all receivers in region 2. If a receiver is in the same region
as the sender, then it has no parent region. Hence none of the receivers in region 1
has a parent region. We also assume that each receiver maintains group membership
knowledge about other receivers in its region as well as receivers in its parent region.
Chapter 5 explains how a receiver can obtain such information.

A receiver detects a message loss by observing a gap in the sequence number space
or by exchanging session messages with other members (described in Chapter 5). In

this chapter, we focus on the error recovery algorithm in RRMP. Other aspects of

3This definition will be refined in Chapter 5 where we show that a receiver’s parent
region may not necessarily correspond to a local region.
g g



42

Region 1

Region 2 Region 3

@ Router @ Receiver (8 Sender

Figure 4.2: Local regions in a hierarchical structure

the protocol (e.g. formation of the error recovery hierarchy, buffer management) are

described in subsequent chapters.

4.2 Details of the Algorithm

Unlike tree-based protocols, RRMP does not use any repair server. Responsibility for
error recovery is randomly distributed among all receivers in the group. Assume that
a receiver p detected a message loss. The loss can either affect a fraction of receivers
in p’s region (a local loss), or can affect all receivers in that region (a regional loss).
In the first case, p can receive a retransmission from neighbors in its region, while
in the second case the loss can only be repaired by a member in a remote region.

Accordingly, the error recovery algorithm in RRMP consists of two phases executed



43

concurrently: a local recovery phase and a remote recovery phase. A local loss can
be repaired through local recovery, while a regional loss is repaired by a combination
of local recovery and remote recovery. The rest of the section describes the details
of the two recovery phases.

In the local recovery phase, a receiver tries to recover a message loss from ran-
domly selected neighbors. More specifically, when a receiver p detects a loss, it selects
a receiver ¢ uniformly at random from all receivers in its region and sends a request
to q. p also sets a timer according to its estimated round trip time to q. Round trip
time measurements are described in the next section. Upon receiving p’s request,
q checks whether it has the message. If so, it sends the message to p. Otherwise
it ignores the request. If p does not receive a copy of the message when its timer
expires, it randomly selects another receiver in its region and repeats the above pro-
cess. As long as at least one local receiver has the message, p is eventually able to
recover the lost message. This has been shown in previous work on epidemic the-
ory [Bai75, OD81]. In particular, a receiver in the sender’s region is able to recover
any lost message through local recovery.

On the other hand, if an entire region missed a message, the message loss cannot,
be repaired within the local region. In tree-based protocols, the repair server of the
region is responsible for contacting a remote member for retransmission. In RRMP,
this responsibility is taken by some randomly selected members in the region during
the remote recovery phase. More specifically, when a receiver p detects a message
loss, it randomly chooses a remote receiver r in its parent region and, with a small
probability P, sends a request to r. P is chosen so that the expected number of

remote requests sent by all receivers in the region is a constant A. For example, let



44

n be the number of receivers in a region. If P = 1/n, then on average one remote
request is sent when the entire region missed a message (hence A = 1). p also sets
a timer according to its estimated round trip time to r. This timer is set by any
receiver missing a message, regardless whether it actually sent out a request or not.
If p does not receive a copy of the message when its timer expires, it randomly selects
another receiver in its parent region and repeats the above process. As long as the
entire region misses the message, the expected number of remote requests during
each try is .

Upon receiving a request from a remote receiver p, r checks whether it has the
requested message. If so, it sends the message to p. Otherwise, r missed the message
as well. In this case, r records “member p is waiting for the message”. When r later
receives a copy of the message, it will relay the message to p. Since r’s region is
upstream of p’s region, it is likely that r will detect and recover the lost message
earlier than p. When p receives a repair message from a remote member, it checks
whether the message is a duplicate. If not, p multicasts the message in its local
region so that other members sharing the loss can receive the message.

The two phases described above, local recovery and remote recovery, are executed
concurrently when a receiver detects a message loss (the receiver does not know how
many members in its region missed the same message). If a receiver has no parent
region, its remote recovery phase does nothing. Figure 4.3 illustrates RRMP’s error
recovery algorithm when all receivers in region 2 missed a message. On the top, local
requests are sent to randomly selected neighbors, and one of them, p, sends a request
to a remote member 7. On the bottom, member r forwards a copy of the message to

p, which then multicasts the message in its local region.



45

Region 3

local requests )
@ Router @ Receiver (8 Sender

regional multicast
@ Router @ Receiver (8 Sender

Figure 4.3: Error recovery in RRMP



46

Figure 4.4 shows another example where the error recovery hierarchy has three
levels. For simplicity, only remote requests are shown in the figure. On the top, a
message loss as indicated caused all receivers in region 2 and region 4 to miss the
message. Receivers in region 2 first detect the message loss. One of them, ¢, sends
a remote request to an upstream member s. Later, receivers in region 4 detect the
message loss. One of them, p, sends a remote request to r. When r receives the
request from p, it finds itself missing the same message. In this case, it records p’s
request. On the bottom, s sends a copy of the message to g. When ¢ receives the
message, it multicasts the message in its local region. Now r receives the message.
Because it remembers p’s request, it forwards the message to p. Finally, p multicasts

the message in its local region.

4.3 Round Trip Time Measurements

Our error recovery algorithm requires that a receiver measure its round trip time
(RTT) to its neighbors as well as to receivers in its parent region. This is achieved
by attaching timestamps in request and repair messages*. Measuring RTT to a local
member is straightforward: when a receiver p sends a request to a local member
q, it attachs a timestamp to the request. This timestamp is copied onto the repair
message sent by ¢ (assume that ¢ has the requested message). Upon receiving the
repair, p can compute its RTT to ¢ using a TCP-like scheme [Jac88].

Measuring RT'T to a remote member is more complicated because a receiver does

not always send a repair immediately after receiving a remote request. This is the

*Clocks at different receivers need not be synchronized.



47

Region 1

message loss

( 1) request

Region 3

Region 2

(2) requeslv‘,"‘

Region 4

Region 1

(I ) repair

Region 3
Region 2

(2) regional multicast

(3) repairv

Region 4

(4) regional multicast

Figure 4.4: Error recovery in a multi-level hierarchy



48

case if the receiver is waiting for a repair for the same message. RRMP addresses this
problem by letting the receiver include local processing time in the repair message, an
idea previously used in the Network Time Protocol [Mil91]. More specifically, when a
member 7 sends a repair to a remote member p, it includes two timestamps, ¢ and A,
where ¢ is the timestamp copied from p’s request, and A is the interval between the
time r received p’s request and the time r sent the repair. Upon receiving the repair,
p can compute its RTT to r by excluding r’s local processing time. This process is
illustrated in Figure 4.5. Moreover, p also includes its RTT estimation to r when
it multicasts the repair message in its region. In a wide area network, the latency
between two regions can be much higher than the latency within a region. Hence all

members in a region can share the same RTT estimation to a remote member.

r

Time

Figure 4.5: Round trip time measurement to a remote member. p’s RTT to r is:
t'—t—A.

The accuracy of RT'T estimation depends on the frequency of requests and repairs
sent. To maintain reasonable accuracy during periods when system loss rate is low,

each receiver enforces a maximum interval 7),,; between any two local requests



49

and a maximum interval 7},,,- between any two remote requests. If no message is
lost, the receiver sends a special request, RTT_QUERY, at the end of the interval,
which triggers an immediate RTT_RESPONSE message. The choice of T}, and
Tnazr reflects a trade-off between bandwidth consumption and the accuracy of RTT
measurements.

Round trip time estimation in the presence of network dynamics is a complicated
problem and has received much attention in the literature [Pax97b, Pax97a, AP99.
Recent studies indicate that Internet RTT's resemble a heavy-tailed distribution with
occasional spikes of extraordinarily high values [AP99]. Most of these studies focus on
the accuracy of RTT estimation in the TCP protocol. It has been shown that many
TCP implementations use very conservative timeout values due to the high penalty of
false alarms: a premature timeout not only triggers an unnecessary retransmission
but also causes the congestion control algorithm in TCP to enter the slow start

phase [Pax97b]. In contrast, a bad timeout has less profound impact on RRMP.

4.4 Optimization

In this section, we describe two optimizations of the basic error recovery algorithm.
The first optimization aims to reduce request traffic, while the second optimization

aims to reduce repair traffic.

4.4.1 Reducing Request Traffic

During the local recovery phase, a member missing a message sends requests to

randomly selected neighbors. However, if the message loss is regional, it can only



a0

be repaired by a remote member. If inter-region latency is much higher than intra-
region latency, it is inefficient for a member to keep sending local requests until the
loss is repaired. Consider the topology in Figure 4.3. Assume that p’s RTT to r is
100ms and to a local member is 1ms. In this case p could send approximately 100
local requests before it gets a repair from r.

The amount of request traffic can be reduced if a member stops sending local
requests when it can conclude with high confidence that no member in its region
has the message. For example, for a region of 30 members with one member hold-
ing the message initially, the probability that a member missing the message will
receive a repair within 7 requests is 99.5% (this can be calculated by summing up
the probability in Figure 4.7 described in the next section). Hence if a loss is not
repaired after sufficiently many local requests were sent, the member can stop its
local recovery phase because it is highly likely that the entire region has missed the
message. When some member in the region later receives a repair during its remote
recovery phase, it will multicast the repair in the region. This multicast, however, is
also subject to loss and may fail to reach some member. Hence, if a member stops
its local recovery phase forever, it will not be able to repair the loss locally when it
can (because now some members do have the message). To avoid this situation, a
member restarts its local recovery phase whenever the timer in its remote recovery
phase expires. With this optimization, error recovery in RRMP consists of a single
remote recovery phase and a series of local recovery phases. Each local recovery
phase is triggered by a timeout during the remote recovery phase except the first
one, which starts upon detection of the loss.

Figure 4.6 illustrates this optimization when all three receivers in a downstream



51

region missed a message. We first look at the top figure. Each of the three receivers
starts the local recovery phase and the remote recovery phase simultaneously. During
the remote recovery phase, p sends a request to an upstream member r. During the
local recovery phase, all three receivers send requests to randomly selected neighbors.
However, because they all missed the same message, these requests never trigger any
repair. After a while, they conclude that the message loss is regional and hence stop
sending local requests. Later, when p gets a remote repair from 7, it multicasts the
message in its local region so that the other two receivers can get the message.

The bottom figure shows a situation similar to the previous one except that the
regional multicast sent by p fails to reach receiver ¢q. In this case, ¢ restarts its
local recovery phase when the timer in its remote recovery phases expires and gets a

retransmission from p.

4.4.2 Reducing Repair Traffic

During the remote recovery phase, when all members in a region missed a message,
on average A of them will send remote requests. When a member receives a repair
from a remote member, it multicasts the repair in its region if the repair is not a
duplicate. Hence if two members receive a repair at the same time, both of them
will multicast the repair. The number of duplications in this case is independent
of n but increases with A. In order to reduce the number of duplicate repairs, we
employ a randomized back-off scheme to suppress duplicate regional multicasts at
the expense of potentially longer recovery latency: upon receiving a remote repair,
a member makes a random decision as whether it should multicast the repair. The

probability it does so is 1/A. Otherwise it waits a random amount of time and tries



52

local requests regional multicast

Time

/

local request

regional multicast /
and repair

local requests

Time

Figure 4.6: Optimization for reducing request traffic



93

again. If it hears a multicast for the same message from another member while
it is waiting, it suppresses its own multicast. The waiting period is proportional
to the propagation delay within its region. Although we introduce back-off delays
before sending regional multicast, this delay is constant for any given A and does not

increase with the size of the region.

4.5 Performance Analysis

This section analyzes the performance of RRMP under several important metrics.

4.5.1 Implosion Avoidance and Robustness

RRMP avoids message implosion by distributing the responsibility of error recov-
ery among all members in the group. If a member suffers from a high loss rate,
its retransmission requests are sent to randomly selected neighbors rather than con-
centrated on a single repair server as in tree-based protocols. Robustness is also
improved because the failure of a single member now has much reduced impact on

other members in the group.

4.5.2 Recovery Latency

Recovery latency is defined as the interval between the time a loss is detected and
the time it is repaired. In RRMP, a member missing a message tries to repair
the loss simultaneously through local recovery and remote recovery. During the
local recovery phase, a member sends requests to randomly selected members in its

region. The recovery latency depends on how many members in the region have



o4

the message. In the worst case only a single member has the message. Epidemic
theory shows that the expected time for the message to propagate to the entire
region in this case is proportional to the log of the region size [Pit87, DGH*87].
Figure 4.7 shows the probability for a member to receive a repair in a particular
request for a region of 30 members, with one member holding the message initially.
The analysis used to compute this figure is similar to previous work on epidemic
algorithms [Bai75, OD81, Pit87, DGH*87, BHO"99].

30

25r

n
o
T

Probability (%)
o

101

1 2 3 4 5 6 7 8
#local requests

Figure 4.7: The probability for a member to receive a repair in a particular request
for a region of 30 members, with one member holding the message initially.

Recovery latency can be reduced if a member sends requests to multiple desti-
nations at a time, although this may increase the number of duplicate repairs. In
addition, when a member selects a destination for its local request, it could bias its
selection to favor members which have given good responses in the past. This, how-
ever, requires a member to maintain additional state for its neighbors. Alternatively,

each member can advertise its smoothed loss rate periodically in its local session



95

messages (described in Chapter 5). Due to differences in network conditions and
local processing capacity, it is possible for some members to have a higher loss rate
than others. Instead of selecting a destination uniformly at random from all other
members in the region, a member can make its selection based on the loss rate of
different members. In the future we plan to investigate these optimizations in detail.

During the remote recovery phase, a member sends a request to a remote member
with probability P = A\/n, where n is the size of the local region. Assume that the
entire region missed a message. The number of remote requests sent has a binomial
distribution with parameters n and P. As n — oo, P — 0 and nP — A. Hence for
large regions the distribution can be approximated by a Poisson distribution with
parameter A [Dur94]®. The probability that k requests are sent is e""l\c—’:. Figure 4.8
shows how the distribution changes with different values of \. When A\ = 2, for
example, it is most likely that either one request or two requests will be sent to an
upstream region. The choice of A reflects a trade-off between recovery latency and
repair duplication. As shown in Figure 4.8, when A is small, there is a substantial risk
that no remote request is sent due to randomization, leading to increased recovery
latency. Fortunately, the probability of this happening is e=*, which decreases expo-
nentially with A as shown in Figure 4.9. When A\ = 4, for example, the probability
is only 1.8%. Hence increasing A can reduce the expected error recovery latency and
improve the robustness of the protocol against loss of request and repair messages.
On the other hand, large A increases the number of duplicate repairs as explained in

the following subsection.

5A similar observation is made in the Search Party protocol [CM99], although the
details are very different.



96

N w N
o o =)

Probability (%)

—_
o

=N wr

#remote requests 9

>

Figure 4.8: For large regions, the number of remote requests sent when all receivers

missed a message approximately follows a Poisson distribution with parameter A.

The probability that £ remote requests are sent is 6_/\/1\7’;'

40

Probability (%)
—_ _ N N w w
o (&) o (4] o (S
T T T T T T

)]
T

Figure 4.9: For large regions, the probability that no remote request is sent when all
receivers missed a message decreases exponentially with .



o7

The concurrent execution of the local recovery phase and the remote recovery
phase increases the likelihood that a local message loss will be repaired by a local
member. This is especially important when the latency between two regions is much
higher than the latency within a region. For example, in Figure 4.1, the receivers
at the left branch of the tree below the point of the message loss are likely to get
retransmissions from the two receivers at the right branch, thus avoiding inter-region

latency.

4.5.3 Repair Duplication

Duplicate repairs can be received for various reasons. For example, inaccurate RTT
estimation may lead to premature timeout, which can trigger duplicate repairs. In
addition, if multiple members in a region simultaneously receive repairs from up-
stream members for the same message, duplicate regional multicasts may be sent
due to randomization. The concurrent execution of local recovery and remote recov-
ery may also introduce multiple repairs for the same message: upon detection of a
loss, a member sends a remote request with probability A/n. If the lost message is
later recovered locally, the repair from the remote member will become a duplicate.
The number of duplicates in this case decreases with n but increases with A\. Hence A
controls a trade-off between recovery latency and repair duplication: large A reduces
recovery latency at the price of a higher number of duplicate repairs. On the other
hand, small A reduces the number of duplicate repairs but leads to longer recovery
latency. Applications with different delay/bandwidth requirements can tune A to

suit their own needs.



o8

4.5.4 Locality of Recovery

Locality of recovery can be measured by comparing the number of members receiv-
ing a repair with the number of members missing the message. Ideally, only those
members which have missed a message are exposed to the repair traffic. In RRMP,
a repair can be sent either in unicast or in regional multicast. If a repair is sent in
unicast, it has perfect locality because a member will receive the message only if it
has asked for it. On the other hand, if a repair is sent in regional multicast, its lo-
cality depends on the percentage of local members missing the message. Recall that
a receiver executes the local recovery algorithm and the remote recovery algorithm
concurrently upon detection of a loss. If the loss affects only a small portion of the
region, a receiver is likely to recover the loss from a neighbor first. If it has also sent
a remote request, the corresponding repair will be discarded as a duplicate upon
receipt and will not trigger a regional multicast. In fact, if the ratio of inter-region
latency to intra-region latency is sufficiently high (which is usually the case in a
WAN), a receiver will always repair a loss from a neighbor first as long as at least
one local member has the message. Consequently, a repair will be sent in a regional
multicast only if the entire region missed the message, in which case it has perfect

locality.

4.6 Conclusion

Error recovery is an essential part of a reliable multicast service. This chapter has
presented a randomized reliable multicast protocol called RRMP which provides

efficient error recovery in large multicast groups. Compared with traditional tree-



99

based protocols, RRMP achieves better load balancing by diffusing the responsibility
of error recovery among all members in the group and improves the robustness of
the system against process failures. Error recovery latency is also improved through
the concurrent execution of the local recovery phase and the remote recovery phase.
In the following chapter, we describe how to construct the error recovery hierarchy

in RRMP.



Chapter 5

Formation of The Error Recovery

Hierarchy

This chapter describes an algorithm for constructing the error recovery hierarchy in
RRMP. The algorithm groups receivers into local regions based on administrative
domains and organizes different regions into a hierarchy according to their distance
from the sender. This is achieved by periodic exchanges of session messages among
all members in a group. We adopt an idea from the scalable session message pro-
tocol [SEFZ98| in SRM which divides session messages into two categories: local
session messages and global session messages. Local session messages are multicasts
restricted within a local region and global session messages are multicasts that reach
the entire group. Session messages are also used to synchronize state among receivers
and to help a receiver detect the loss of the last message in a burst, an idea previously
used in the SRM protocol [FJM*95]. The global session interval T, and the local

session interval 7j; are configuration parameters of the system.

60



61

This chapter is structured as follows. Section 5.1 describes how to group receivers
into local regions. Section 5.2 describes how to organize different regions into an error
recovery hierarchy. Properties of the hierarchy formation algorithm are discussed in
Section 5.3. We will refine the definition of a parent region introduced in the previous
chapter. Related work in this area is described in Section 5.4. In particular, we
compare our protocol with the scalable session message protocol [SEFZ98| in SRM.

Section 5.5 concludes.

5.1 Formation of Local Regions

RRMP divides receivers into local regions based on administrative domains and uses
administrative scoping to restrict the scope of local session messages. For example,
all receivers in Cornell University can form a local region. Receivers within a region
periodically exchange local session messages to learn about their neighbors and to
estimate the size of the region. A local session message from a receiver contains the
largest sequence number it has received from the sender (for loss detection purposes)
and some optional fields. For example, a receiver could advertise its smoothed loss
rate in its local session message. Such information might be helpful during the local
error recovery process because a receiver missing a message can toss a weighted
coin to select destinations for its local requests based on the error probabilities of its
neighbors as described in the previous chapter. Robustness of the protocol is achieved
through soft-state timers: if a receiver has not been heard from for a certain period

of time, it is assumed to have crashed or left the region.



62

5.2 Establishment of the Hierarchy

Once local regions are formed, a member needs to establish group membership knowl-
edge about members in its parent region. To make this possible, every member
periodically announces its presence by multicasting a global session message to the
group. If all members send global session messages at a fixed interval, the total
number of global session messages increases linearly with the size of the group. To
reduce bandwidth consumption, we keep the expected number of global session mes-
sages from each region to a constant using a randomized algorithm similar to that
used in the remote error recovery phase as described in Chapter 4. More specifically,

during each session interval 7,

ys» @ member r multicasts a global session message only

with probability \'/n , where X' is a system configuration parameter and is not nec-
essarily the same as the A\ used for error recovery. For example, if a local region has
100 members and each member multicasts a global session message with probability
4/100, then on average 4 global session messages are sent to the group during each
session.

The global session message from member r contains the largest sequence number
r has received from the sender, its hop counts from the sender, the initial TTL value
of the message, and some optional fields (e.g. its smoothed loss rate). A member
obtains its hop counts from the sender through the TTL field of data or session
messages it received from the sender. Let s denote the sender of the multicast group
and Hop(r, s) denote the number of hops between r and s. Figure 5.1 illustrates
the format of a global session message. Both local and global session messages have

constant size.



63

max seqno Hop(r, s) initial TTL

Figure 5.1: Format of global session message.

When a member p receives a global session message from a remote member r, p
needs to decide whether it selects r as a member in its parent region. Recall that
members in the sender’s region have no parent region. If p is not in the sender’s
region, it makes its decision in two steps. First it checks whether r is an upstream
member. If so, in the second step it checks whether r is close enough to be an
appropriate destination for sending remote requests. In the following we describe
the details of the two decision steps.

During the first step, p compares its position in the multicast tree with that of
r to decide whether r is upstream in the hierarchy. Since the topological structure
of the underlying tree is not explicitly available at the transport layer, p deduces
their relative positions based on its distance from r and their distances from the
sender. More specifically, p considers r to be an upstream member if the following

two conditions hold:
e 1 is closer to the sender than p ;
e p is closer to r than to the sender.

Using the Hop notation defined previously, the above two conditions can be expressed
as follows:

Hop(r, s) < Hop(p, s)

Hop(p,r) < Hop(p, 5)



64

All distance information used in the comparison can either be calculated by p or is
included in r’s global session message. Figure 5.2 illustrates a situation where the

positions of s, p, and r satisfy both conditions.

Figure 5.2: Example of upstreamness test. In this case, we have Hop(r, s) < Hop(p, s)
and Hop(p,r) < Hop(p, s). Hence r is an upstream member of p.

It is helpful to understand why these two conditions are sensible measurements
of upstreamness. Recall that members in the parent region are potential destinations
for remote requests. If r is closer to the sender than p, it is likely the case that r can
detect a message loss and recover from it earlier than p. This is checked in the first
condition. In addition, if p is closer to r than to the sender, then it is faster for p to
get a repair from 7 than from the sender. This is checked in the second condition.
Both of them are important criteria in choosing appropriate destinations for remote
requests. Consider the situation in Figure 5.3. In this case, r is still closer to the

sender than p. However, because its position is at the other side of the multicast tree,



65

it is inefficient for p to solicit a retransmission from r. Doing so not only increases

error recovery latency but also wastes network bandwidth.

Figure 5.3: Another example of upstreamness test. In this case, we have Hop(r, s) <
Hop(p, s) but Hop(p, ) > Hop(p, s). Hence r is not an upstream member of p.

If r is an upstream member, in the second step p compares its distance from
r with that from other upstream members which it has heard from recently, and
chooses a set of closest ones as members in its parent region. More specifically, p
maintains its current estimate of least upstream members in a list. Each element in

the list contains the following information for an upstream member r:
e 7’s network address ;
e p’s hop counts from 7 ;

e a soft state timer.



66

This timer is reset whenever p hears from r. When it expires, r is dropped from the
list. This does not imply that r has left the group because a member only sends a
global session message with a certain probability. Hence other members in r’s region
may have been added to the list. The property of the list is that p’s distance from
the farthest member in the list is at most H hops more than its distance from the
closest member. This is illustrated in Figure 5.4. Whenever p adds a new upstream
member to the list, it checks whether the property still holds. If not, members which
are too far away (either the newly added member or some existing ones) are dropped
from the list. H is a system configuration parameter that controls the degree of

heterogeneity in the parent region.

P

Figure 5.4: Member p selects a set of closest upstream members to be in its parent
region. The algorithm requires that p’s distance from the farthest member in the
region is at most H hops more than its distance from the closest member. H controls
the degree of heterogeneity in the parent region.

The choice of H reflects a trade-off between load balancing and error recovery

latency. With large H, more members are likely to stay in the parent region. In



67

the extreme case, a member may include all upstream members to be in its parent
region. While this provides good load balancing for serving remote requests and a
high degree of fault-tolerance against process failures, it also increases the possibility
of soliciting retransmissions from upstream members which are quite far away. In
contrast, with small H, a member is likely to send requests to nearby members,
which reduces error recovery latency. In the extreme case, each member can keep
only one upstream member in its parent list. This member, however, now bears the
entire burden of error recovery for its downstream members.

If a member does not have any upstream member in its list, it chooses the sender
as the default destination for its remote requests. This is the case when the member
first joins the group. Figure 5.5 shows an example run of the algorithm described
in this section. In this figure, p has two upstream regions, one on top of the other.
Members s, ¢, and r are in the top-most region (s is the sender), while z, y, and z
are in p’s least upstream region. We use arrows to denote global session messages
received by p even though these messages are actually sent to the entire group. For
simplicity, we assume that H is larger than the distance within a region but smaller
than the distance between the two regions. Initially p selects s as the default member
in its list. When it receives a session message from r, it adds r into its list of least
upstream members. Later y sends a global session message. Upon receipt of the
message, p drops s and r from its list because they are now too far away. y becomes
the only member in the list. Later p hears from x and adds it into its list. When p
receives a global session message from ¢, it finds that ¢ is too far away to be in its

list and hence ignores the message. Finally, z is added into p’s list.



68

3\l

[s] \[sr]\[y] \[yx]\[yx]\[yxz]
P

Time

Figure 5.5: An example run of the algorithm to choose the parent region for member
D .



69

5.3 Properties of the Algorithm

In our algorithm, the parent region for a receiver does not necessarily correspond to
a local region. Because each receiver multicasts a global session message only with
a certain probability and H may be smaller than the diameter of a local region, it
is possible that a receiver’s parent region contains only a subset of receivers in its
least upstream region. Better load balancing can be achieved for serving remote
requests if a receiver knows more members in its parent region, but the correctness
of the protocol does not depend on the completeness of such knowledge. Nor does it
require that such knowledge be consistent across different receivers in the same local
region.

In addition, if a receiver has multiple upstream regions with similar distances,
its parent region may contain a mixture of receivers from different local regions.
Figure 5.6 illustrates a situation where region 4 has two upstream regions with similar
distances. In this case a receiver in region 4 may select a mixture of receivers from
region 2 and receivers from region 3 to be in its parent region. Since each receiver
independently selects the destination for its remote request when an entire region
misses a message, this scheme increases the possibility of getting a repair when some
links in the network get congested. This is in contrast to a tree-based protocol in
which all receivers in a local region rely on a single repair server for error recovery.

So far we have assumed that the algorithm uses hop counts to measure the dis-
tance between two receivers. The algorithm can be easily modified to use latency or
round trip time as the distance metric. For example, currently the property of the

parent region for receiver p requires that p’s distance from the farthest member in



70

Figure 5.6: Formation of error recovery hierarchy in RRMP. The parent region of a
receiver in region 4 may contain a mixture of receivers from region 2 and receivers
from region 3.

the region is at most H hops more than its distance from the closest member. Should
round trip time be used as the metric, the property would become: p’s RTT from
the farthest member in the region is at most 7" seconds larger than its RT'T from the
closest member. As discussed in the previous chapter, measuring RTT between two
receivers on the Internet is a difficult problem due to its large variation. It is even
more challenging to measure RTTs between many pairs of receivers when the clocks
at these receivers are not synchronized. One optimization proposed in the previous
chapter is to let all receivers in a local region share the round trip time estimation
to a remote receiver. This is appropriate when the latency between two regions is
much higher than the latency within a region, which is usually the case in a WAN.
In addition, it is possible to consider a combination of several metrics such as hop

counts, latency, loss rate, bandwidth, etc.. We leave this issue for future work.



71

Because of its randomized nature, RRMP is robust against transient inconsistency
in group membership that can arise during process joins and leaves. It has higher
memory requirements than tree-based protocols because each receiver needs to keep

information about other receivers in its region as well as receivers in its parent region.'

5.4 Related Work

Related work has been done in tree-based protocols in the context of building an error
recovery tree. The performance of tree-based protocols usually depends heavily on
the quality of the tree. They can be classified as using either a static tree or a
dynamic tree. The RMTP protocol is an example of using a static tree. In this
protocol, specific machines are chosen to serve as repair servers and are statically
organized into an error recovery tree. Every repair server periodically multicasts
an advertisement message with a pre-specified TTL value. A receiver interested in
joining the group can estimate its hop counts from different repair servers through
the TTL field of advertisement messages it has received. Then it selects the closest
one as its repair server. In effect, each repair server builds a local region in its
proximity using T'TL-based scoping.

TMTP is a protocol that uses a dynamic tree. In this protocol, repair servers are
dynamically organized into a tree based on expanded ring search. A receiver always
chooses the closest repair server as its parent, even if the server is downstream in
the underlying multicast tree. In addition, several repair servers can form a loop of

parent-child relations.

'In addition, a receiver in RRMP needs to buffer received messages for possible
retransmissions. Buffer management is described in Chapter 6.



72

The Tracer protocol [LPGLA98] uses the MTRACE packet of IGMP protocol
to discover the routing path from a receiver to the sender. In this protocol, every
receiver sends an MTRACE query packet to the sender. As this query is passed
hop-by-hop from the receiver to the sender, it records the path in the data portion
of the packet. When the query reaches the sender, a response is returned to the
receiver as a standard unicast packet. Based on the multicast path information,
receivers are organized deterministically into a tree structure to achieve efficient
local recovery. This approach, however, may put a heavy burden on the sender in a
large multicast group because the sender needs to return a response for every receiver
in the group [RM99a, RM99b].

Other related work includes the scalable session message protocol [SEFZ98] that
proposes a self-configuring algorithm for establishing a hierarchical structure for dis-
tributing session messages. In this protocol, members are dynamically organized into
a hierarchy of global members and local members. Global members send global ses-
sion messages to the entire group, while local members send local session messages
with a restricted scope. The hierarchy is established using a stochastic algorithm
based on randomized timers and a set of appropriateness measures. For example, a
global member with few local members in its region has a high appropriateness to
switch to a local member if there is another global member nearby.

Both the RRMP protocol and the scalable session message protocol use a mixture
of global session messages and local session messages to form a hierarchical structure.
However, the two protocols are different in significant ways. RRMP is designed for
“one-to-many” multicast applications. It forms local regions based on administra-

tive domains and restricts the scope of local session messages using administrative



73

scoping. Regions are organized into an error recovery hierarchy according to their
distance from the sender. In contrast, SRM is designed for “many-to-many” multi-
cast applications. Consequently, the hierarchy built in the scalable session message
protocol is not organized with respect to a given source. There is no notion of up-
streamness in its algorithm. The protocol uses TTL-based scoping to restrict the
propagation of local session messages. This requires that the underlying routing pro-
tocols support the semantics of TTL-based scoping. Moreover, the hierarchy there is
used only for distributing session messages in the SRM protocol and not for sending
retransmission requests and replies.

Recently several proposals have been made on router-assisted reliable multicast
as described in Chapter 2. For example, Search Party is a protocol that extends the
existing IP multicast model by introducing a new forwarding service called random-
cast at routers. In this protocol, when a receiver detects a message loss, it sends
a request in a randomcast packet which is forwarded randomly inside a multicast
distribution tree. The recipient of the request sends the repair message in a directed
multicast that restricts its scope to the lossy subtree. A receiver missing a message
keeps sending requests as a Poisson process until it receives a repair.

Both RRMP and Search Party use randomization to improve robustness. How-
ever, the two protocols differ in significant ways. RRMP works well within the
existing IP multicast framework. It builds its error recovery hierarchy at the trans-
port level without imposing any specific structure inside a region. In contrast, Search
Party requires a new forwarding service from routers. It uses the underlying multicast
tree itself for error recovery and avoids the need to construct a separate hierarchy.

The forwarding service of randomcast relies on topological information of the mul-



74

ticast tree which is only available at the network level. The two protocols are also
different in how request and repair messages are sent and have different performance

characteristics.

5.5 Conclusion

Building an efficient error recovery hierarchy is essential to achieving high perfor-
mance in reliable multicast protocols. This chapter has described the hierarchy
formation algorithm in RRMP that organizes receivers in a multicast group into a
hierarchy of local regions. Through periodic exchange of session messages among all
receivers in the group, a receiver can establish group membership knowledge about
receivers in its local region as well as receivers in its parent region. Such knowledge

is required to perform randomized error recovery as described in Chapter 4.



Chapter 6

Buffer Management

Reliable multicast delivery requires that a multicast message be received by
all receivers in the group. Hence certain or all members need to buffer mes-
sages for possible retransmissions. Previous work has demonstrated that relying
solely on the sender for retransmissions leads to the message implosion problem
[FIM195, PSLB97]. Consequently, several reliable multicast protocols adopt a dis-
tributed error recovery approach that allows certain or all members to retransmit
packets lost by other members. For example, in the SRM protocol [FJMT95], re-
transmissions are performed by all members in the group. In tree-based protocols
like RMTP [PSLB97], LBRRM [HSC95|, and TMTP [YGS95], members are grouped
into local regions based on geographic proximity and a repair server is selected in
each region to perform retransmissions.

If a member wants to perform retransmissions for other members, it needs to
buffer received messages for some period of time. Determining which receivers should

buffer a message and for how long turns out to be a difficult problem. A conservative

75



76

approach is to have every member buffer a message until it has been received by all
current members in the group. However, this is inefficient in a heterogeneous network
where the delivery latency to different members could differ by orders of magnitude.
Moreover, some reliable multicast protocols adopt the IP multicast group delivery
model in which receivers can join or leave a multicast session without notifying other
receivers. Consequently, no single receiver has complete membership information
about the group.

Buffer management algorithms in existing reliable multicast protocols reflect
widely different strategies for deciding which members should buffer messages and
how long a message should be buffered. In some tree-based protocols, a repair server
buffers all data packets it has received in the current multicast session. For exam-
ple, the RMTP protocol was originally designed for multicast file transfer. In this
protocol, a repair server buffers the entire file in a secondary storage. The approach
is feasible only if the size of data transmitted in the current session has a reasonable
limit. For long-lived sessions or settings where repair servers lack space, the amount
of buffering could become impractically large.

The SRM protocol does not buffer packets at the transport level. Rather, the
application regenerates packets if necessary based on the concept of Application Level
Framing (ALF) [CT90]. This requires that the application be designed according
to the ALF principle and be capable of reconstructing packets. Even so, buffer
management at the application level remains a challenge.

Some reliable multicast protocols use a stability detection algorithm to detect
when a message has been received by all members in the group and hence can be

safely discarded [GR00]. This requires members in the group to exchange message



7

history information periodically about the set of messages they have received. In
addition, a failure detection algorithm is needed to provide current group membership
information.

Previously we and others proposed a message buffering algorithm for reliable mul-
ticast protocols that reduces the amount of buffer requirement by buffering messages
on only a small set of members [OvRBX99]. More specifically, we assume that each
member has an approximation of the entire membership in the form of network ad-
dresses. The approximation needs not be accurate, but it should be of good enough
quality that the probability of the group being logically partitioned into disconnected
subgroups is negligible. Upon receiving a message, a member determines whether it
should buffer the message using a hash function based on its network address and
the identifier of the message!. If a member missed a message, it uses the same hash
function to identify the set of members which should have buffered the message and
requests a retransmission from one of them.

This algorithm makes no use of network topology information. Consequently, it
suffers from a tendency to do error recovery over potentially high latency links in
the network. Hence the protocol will have a scalability problem in genuinely large
networks. Desired is an algorithm that selects receivers to buffer a message based
on geographic locations of different receivers. Unfortunately, our previous algorithm
cannot be easily modified to incorporate such information. The work described in
this chapter was motivated by this observation.

In the following, we report our work on optimizing buffer requirements in RRMP.

This work extends our previous work on buffer optimization by proposing an innova-

1A commonly used identifier is [source address, sequence number].



78

tive two-phase buffering algorithm that explicitly addresses the variances in delivery
latency for large multicast groups. The algorithm reduces buffer requirements by
adaptively allocating buffer space to messages most needed in the system and by
spreading the load of buffering among all members in the group. Unlike stability
detection protocols, the algorithm does not require periodic exchange of messages
and has low traffic overhead.

The rest of the chapter is organized as follows. Section 6.1 describes the details
of our buffer management algorithm. Section 6.2 evaluates its performance using
simulation. Limitations of the algorithm are presented in Section 6.3. Section 6.4

concludes.

6.1 Optimizing Buffer Management

As described in Chapter 4, the RRMP protocol distributes the responsibility of error
recovery among all members in a group. Hence every member needs to decide how
long a message should be buffered for possible retransmissions. The problem is that
this involves a trade-off with error recovery latency. If a member discards a message
and later receives a retransmission request for that message, it would be unable to
answer the request. Due to the randomized nature of our error recovery algorithm,
this does not necessarily compromise the correctness of the protocol because another
request will be sent to a randomly chosen member upon timeout. As long as some
member still buffers the message, the loss can be recovered eventually. However,
error recovery latency is increased because more requests were needed to repair the

loss. The problem is even more complicated in a wide area network where the



79

latency between two regions can be significantly higher than the latency within a
region. Since a member can receive a request either from a local member or from a
remote member, it is difficult to determine how long a message should be buffered
for potential requests.

In order to reduce buffer requirements effectively while minimizing its impact on
recovery latency, RRMP adopts an innovative two-phase buffering scheme: feedback-
based short-term buffering and randomized long-term buffering. When a message is
first introduced into the system, every member that receives the message buffers it
for a short period of time in order to satisfy local retransmission requests. Later
when the message has been received by almost all members in a region, only a small
subset of members in this region continue to buffer the message. The rest of the

section describes the details of our scheme.

6.1.1 Feedback-based Short-term Buffering

First we investigate how long a member should buffer a message for local retrans-
mission requests. Since the outcome of the initial IP multicast for each message can
be different, it is undesirable to buffer every message for the same amount of time.
For example, if only a small fraction of members in a region have received a message
during the initial IP multicast, these members should buffer the message for a long
period of time in order to satisfy local requests from other members. In contrast,
if almost all members have received the message during the initial multicast, then
the message can be discarded quickly. Ideally, we want to allocate buffer space to
messages most needed in the system.

In RRMP, the buffering time for a message is based on an estimation of how



80

many members in the region have received the message. One way to estimate this
information is to let all members periodically exchange message history information
about the set of messages they have received, an idea previously used in some stability
detection protocols [GRO0]. Here we propose a different scheme in which a member
estimates this information based on the history of retransmission requests it has
received. Recall that in RRMP every member missing a message sends local requests
to randomly selected members in its region. Hence the likelihood that a member
receives a request increases with the number of members missing the message. More
formally, let n be the size of a region and p be the percentage of members in this
region missing a message. The probability that a member will not receive any request

1s:
1
n—1

(1-

)"

As n — oo, this probability can be approximated by e P, which decreases expo-
nentially with p. Consequently, if a member has not received any request after a
sufficiently long period of time, it can conclude with high confidence that almost all
members in the region have received the message. Based on this observation, we
design a feedback-based scheme for short-term buffering: when a member receives a
message, it buffers the message until no request for this message has been received for
a time interval 7. Such a message is called an idle message and 7" is called the idle
threshold. The choice of T' depends on the maximum round trip time within a region
and the confidence interval. We call this a feedback-based scheme because a member
uses the retransmission requests it received as feedback to estimate how many mem-
bers in the region still miss the message. Unlike stability detection protocols, our

scheme does not introduce extra traffic into the system.



81

6.1.2 Randomized Long-term Buffering

After a message has become idle, a member may decide to discard it. However, due to
the randomized nature of the algorithm, it is possible that a message is still missing
at some receivers but has become idle everywhere else. These unlucky receivers will
not be able to recover the loss if all other members have decided to discard the
message. Moreover, since inter-region latency can be much larger than intra-region
latency, a member may receive a remote request from a downstream member asking
for a message that has become idle at all members in the region.

RRMP addresses this problem by providing long-term buffering for an idle mes-
sage at a small subset of receivers in each region. The set of long-term bufferers
are chosen randomly from all members in a region. More specifically, when a mem-
ber detects that a message has become idle, it makes a random choice to become
a long-term bufferer with probability P. P is chosen so that the expected number
of long-term bufferers in the region is a constant C'. For a region with n members,
probability theory shows that the number of long-term bufferers has a binomial dis-
tribution with parameters n and P [Dur94]. As n — oo, P — 0 and nP — C. Hence
for large regions the distribution can be approximated by a Poisson distribution with
parameter C. (In Chapter 4 we applied a similar technique to analyze the number
of remote requests sent when an entire region missed a message.) The probability
that £ members buffer an idle message is 6—0(;;_:“_ Figure 6.1 shows how the distribu-
tion changes with different values of C. The choice of C reflects a trade-off between
buffer requirements and recovery latency. With large C' more members buffer an
idle message, and hence an unlucky receiver in the previous scenario will recover the

loss faster. On the other hand, small C reduces buffer requirements but may lead to



82

longer recovery latency. In particular, it is possible that an idle message is buffered
nowhere due to randomization. The probability of this happening decreases expo-
nentially with C' as shown in Figure 6.2. When C' = 6, for example, the probability
is only 0.25%.2

—_ - N
o [} o

Probability(%)

[é)]

o

[$; e >RENRoe]

(@]

Figure 6.1: For large regions, the number of long-term bufferers for an idle message
approximately follows a Poisson distribution with parameter C.

When the sender multicasts a stream of messages, the load of long-term buffering
is spread evenly among all members in a region. This is in contrast to some tree-
based protocols where a repair server bears the entire burden of buffering messages
for a local region. Eventually even a long-term bufferer may decide to discard an
idle message if the message has not been used for such a long time that it is highly

unlikely any member may still need it.

2This is the probability that no receiver in a region buffers a message in its long-
term buffer. It is not the probability that a receiver will miss a message. For example,
if the receiver gets the message during the initial multicast, it will not need any error
recovery at all.



83

N
o

Probability (%)
- _ N N w W
o (%] o (42} o (S
T T T T T T

[$))
T

Figure 6.2: For large regions, the probability that no member buffers an idle message
decreases exponentially with C.

Receivers may join or leave a multicast session dynamically. When a receiver
voluntarily leaves the group, it transfers each message in its long-term buffer to a
randomly selected receiver in the region. This avoids the situation where all long-

term bufferers decide to leave the group, making a message loss unrecoverable.

6.1.3 Search for Bufferers

When a member p receives a remote request from a downstream member r for a

message, there are three possibilities:
e p has received the message and still buffers it.
e p has never received the message.

e p received the message but has discarded it.



84

In the first case, p can immediately send the message to r. In the second case, p
records 7’s request. Later when p receives the message, it will forward the message
to r as described in Chapter 4. In the third case, however, p needs to search for a
member which buffers the message.

One solution is for p to multicast r’s request in its region. If a member has the
message in its buffer, it multicasts a reply “I have the message” and then forwards the
message to r. A randomized back-off scheme is used to suppress duplicate responses
when multiple members buffer the message: upon receiving a request, a member
waits a random amount of time before multicasting its reply in the region. If it hears
a multicast for the same message, it suppresses its own multicast. The problem is how
to choose an appropriate back-off period. As described earlier, the expected number
of long-term bufferers for an idle message is C'. Hence it is tempting to set the back-
off period to be proportional to C. In practice, however, we have found that this
approach occasionally leads to message implosion. Recall that in our feedback-based
buffering scheme each member independently decides when a message has become
idle based on retransmission requests it received from other members. Because of
randomization, it is possible that a message has become idle and been discarded at
one member but is still being buffered at many other members (i.e. the message has
not become idle at all members in the region). If a multicast request is sent in this
case, the back-off period will be too short to suppress duplicate responses effectively.

In order to avoid storms of multicast replies, RRMP adopts a different approach
where a member conducts a random search in its region to find out a bufferer of
the message. More specifically, when p receives r’s request, it randomly selects a

member ¢ in its region and forwards r’s request to ¢. p also sets a timer according



85

to its estimated round trip time to q. Upon receiving r’s request, ¢ checks whether
the message is still in its buffer. If so, it sends the message to r and multicasts a
reply “I have the message” in its region. This reply notifies other members that the
search process is over. If ¢ has discarded the message as well, it joins p in the search
process and tries to find a bufferer of the message®. If p does not hear a reply when
its timer expires, it randomly selects another receiver in its region and repeats the
above process. As time goes by, more and more members will join the search process.
As long as at least one member in the region still buffers the message, r will receive
the message eventually.

Figure 6.3 illustrates the search process in a region with four members, one of
which is a bufferer. The horizontal direction represents different members in the
group, and the vertical direction represents the amount of time that has elapsed
since the search starts. We assume that the latency between any two members in
the region is bms. Suppose member p; receives a remote request at time 0. It
forwards the request to a randomly selected member py. Since p, does not have the
message either, it forwards the request to p3. After 10ms p; times out and sends
another request to ps, which is the bufferer. Upon receipt of the request, p, sends
the message to the remote member and multicasts a reply in the region.

The search time for a message depends on the number of members that buffer the
message. If the message has become idle at all members in the region, the expected
number of bufferers is C'. Hence increasing C' can reduce search time at the expense
of higher memory requirements. In particular, the search process is avoided if r’s

request arrives at a bufferer of the message.

3If ¢ has never received the message, it will send retransmission requests as de-
scribed in Chapter 4.



86

bufferer
P1 V%) P3 P4
0
Sms
Time
20ms fE

Figure 6.3: Search for bufferers in a local region

The above discussion is simplified in assuming that p is the only member receiving
a remote request. As described in Chapter 4, when an entire region missed a message,
on average A members will send remote requests to an upstream region. As soon as

one of them receives a remote repair, it will multicast the repair in its region.

6.1.4 Comparison with a Hash-based Scheme

In the RRMP protocol, the set of long-term bufferers are chosen randomly from
all receivers in a region. Previously we and others proposed a deterministic algo-
rithm [OvRBX99] that chooses a subset of receivers in a group to serve as bufferers
using a hash function as described at the beginning of the chapter. It is interesting

to compare these two approaches.



87

We believe that the choice reflects a trade-off between network traffic and compu-
tation overhead. Under the deterministic algorithm, a receiver can find out the set of
bufferers for a message by applying the hash function to the network address of each
member in its region. This avoids the latency and network traffic associated with the
search process. However, it incurs certain computation overhead because the hash
function needs to be calculated each time a message is received. In [OvRBX99] van
Renesse proposed the design of an efficient hash function.

One advantage of the randomized algorithm is that it allows easy adaptation to
group membership dynamics: when a receiver voluntarily leaves the group, it can
transfer messages in its long-term buffer to randomly selected receivers in its region.

It is not clear how this can be done easily with a deterministic algorithm.

6.2 Simulation Results

In this section, we evaluate the performance of our buffer management scheme using
simulation. We focus on the behavior of the protocol in a local region. The round
trip time between any two members in the region is 10ms. The idle threshold 7" is set
to 40ms (i.e., 4 times the maximum round trip time). We assume that retransmission
requests and repairs are not lost.

We first evaluate the effectiveness of our feedback-based short-term buffering
scheme in a region with 100 members. We simulate the outcome of an IP multicast
by randomly selecting a subset of members to hold a message initially. All other
members simultaneously detect the loss and start sending local requests. We measure

how long these initial members buffer the message. The result is shown in Figure 6.4



88

(note that the z-axis is in logarithmic scale). As can be seen from the figure, the
amount of buffering time decreases as the initial IP multicast has reached more

members.

110

1001 7

©
o
L

801 b

701 J

60 b

50 7

average buffering time (ms)

40t 1

30 7

20 Il Il Il Il Il Il
1 2 4 8 16 32 64

#members holding a message initially

Figure 6.4: Effectiveness of feedback-based buffering. The z-axis is in logarithmic
scale. The figure indicates that the amount of buffering time decreases as the initial
IP multicast has reached more members.

In Figure 6.5 we take a closer look at one of the data points in Figure 6.4 where
one member holds a message initially. We compare the number of members which
have received the message with the number of members which buffer the message as
error recovery proceeds. As can be seen from the figure, when only a small percentage
of members have received the message, almost all of them buffer the message. The
number of short-term bufferers declines rapidly when an overwhelming majority of
members (96% in this case) have received the message. The results in these two
figures demonstrate that our feedback-based scheme is effective in allocating buffer

space to messages most needed in the system.



89

—©— #received
100H —+— #buffered

90+

801

701

601

#members

501

401

301

20+

[ i L L Il
0 20 40 60 80 100 120 140
time (ms)

Figure 6.5: Comparison between the number of members which have received a mes-
sage and the number of members which buffer the message as error recovery proceeds.
The figure indicates that the number of short-term bufferers declines rapidly when
an overwhelming majority of members have received the message.

Next we investigate the penalty in error recovery latency due to a need to search
for a bufferer. We assume that a remote request arrives at a randomly chosen member
in a region with 100 members. The simulation is repeated 100 times with different
random seeds and the average is taken. Figure 6.6 shows that the search time
decreases as the number of bufferers increases*. With 10 bufferers, for example, the
average search time is 20ms (i.e. twice the round trip time). In a wide area network,
the latency between two regions is usually much higher than the latency within a
region. Hence the search time is likely to be a small fraction of the total recovery
latency.

In Figure 6.7 we show how the search time changes when the size of the region

increases from 100 members to 1000 members. The number of bufferers is fixed at 10.

4The search time is 0 if the request arrives at a bufferer.



90

a
o

N
&
T

N
o
T

35r

w
o
T

search time(ms)

251

20

#bufferers

Figure 6.6: Search time decreases as the number of bufferers increases.

The figure indicates that the degree of increase in search time is much smaller than
that in region size: when the region size increases by a factor of 10, the corresponding
search time only increases by a factor of 2.2. With 1000 members, the percentage
of bufferers is only 1%. Compared with the case where every member buffers the

message, our algorithm reduces the amount of buffer space by a factor of 100.

6.3 Limitation

In RRMP, a member may discard a message before the message has been received by
all members in the group. This is in contrast to stability detection protocols where a
message is discarded only after it has been delivered everywhere. Consequently, our
buffering scheme introduces a small probability of violating the reliability guarantee

of the multicast service. Such probability can be made arbitrarily small with carefully



91

a
o

N
&
T

N
o
T

35r

W
o
T

search time(ms)

251

Il Il Il Il Il Il Il Il Il Il
100 200 300 400 500 600 700 800 900 1000
region size

Figure 6.7: Search time as the size of the region increases.

chosen parameters for the protocol, but still must be accounted for when designing
an application.

Applications that require stronger guarantees should use a protocol that provides
better reliability, such as virtual synchrony [Bir97]. The probabilistic guarantees
offered by RRMP have the benefit of superior scalability and intrinsic robustness in
networks subject to message loss and process failures, but are not appropriate when

absolute guarantees of reliability are needed.

6.4 Conclusion

Designing an efficient buffer management algorithm is challenging in large multicast
groups where no member has complete group membership information and the de-

livery latency to different members could differ by orders of magnitude. This chapter



92

has presented an innovative two-phase buffering algorithm that explicitly addresses
variations in delivery latency seen in large multicast groups. Unlike tree-based pro-
tocols where a repair server bears the entire burden of buffering messages for a local
region, RRMP achieves better load balancing by spreading the load of buffering
among all members in the region. Compared with stability detection protocols, our
buffering algorithm has low traffic overhead because it does not require periodic ex-
change of message history information among members in the group. Simulation
results demonstrate that the algorithm has good performance.

Although we present our buffer optimization in the framework of RRMP protocol,
similar techniques can be applied to other reliable multicast protocols as well. In the
following we summarize the main ideas in our algorithm and discuss how they can

be applied to the SRM protocol:

e The dissemination status of the initial IP multicast for each message can be
different. A good buffering algorithm should adaptively allocate buffer space

to messages most needed in the system.

e Retransmission requests can be used as feedback to estimate the dissemination
status of a multicast message. In the SRM protocol, retransmission requests
and replies are multicast to the entire group. If a receiver has not received any
request for a message after a sufficiently long period of time, it can conclude
that the message is stable. Such information can be helpful to the application

in managing its buffer space.

e In a large multicast group, it may take a long time for a message to become

stable. While research on stability detection focuses on optimizing buffer space



93

after a message has become stable, our work aims to reduce buffer space even
before stability has been achieved. In the context of SRM, instead of having
every receiver buffer a message until the message is stable, a randomly selected

subset of receivers can serve as bufferers for the message.

In a wide area network, the latency between two regions can be much higher
than the latency within a region. Our buffering algorithm addresses this differ-
ence in latency by dividing buffer space into two parts: the short-term buffer
allows a local loss to be recovered quickly within the local region, while the
long-term buffer serves to satisfy remote requests from downstream regions
without consuming too much buffer space. Although the original SRM proto-
col is unstructured, extensions have been made to introduce an error recovery
hierarchy into the protocol [LESZ98, SEFZ98]. Our two-phase buffering scheme

can be applied in such a hierarchy.



Chapter 7

Simulation Results

In this chapter, we evaluate the performance of RRMP using the ns2 simulator [UCB].
As a target for comparison, we also implemented a tree-based reliable multicast
protocol called TRMP in the simulator. In TRMP, a receiver missing a message gets
a retransmission from its repair server in unicast. If the repair server itself has missed
a message, it gets a retransmission from its least upstream server in the hierarchy and
then multicasts the retransmission in its local region. The TRMP protocol is used
to illustrate the problem of load concentration on repair servers and to investigate
the performance penalty in the RRMP protocol due to randomization. It would
be interesting to also compare RRMP with some existing tree-based protocols like
RMTP. In fact, TRMP is based on RMTP and we believe that most of the results
presented in this chapter can be applied to the RMTP protocol.! Unfortunately, the
source code for the RMTP protocol was not made available to us by the developers,

making a direct comparison impossible. The configuration parameters for the RRMP

I'TRMP does not include all features of RMTP. In particular, it does not imple-
ment the flow and congestion control algorithms in RMTP.

94



95

protocol are shown in Table 7.1. For simplicity, we assume that every receiver buffers

received messages for a sufficiently long period of time.

Table 7.1: Configuration parameters for RRMP

parameter ‘ description ‘ value ‘
T ezl maximum interval between any two local requests 1 second
Thnazr maximum interval between any two remote requests 5 seconds
Tys global session interval 1 second
T, local session interval 1 second
H degree of heterogeneity in a parent region 4 hops
N expected number of global session messages per region | 2

7.1 Test Description

We conduct two sets of simulation tests with different topologies and loss patterns. In
the first set of simulations, the topology consists of 4 regions connected in a hierarchy
as shown in Figure 7.1 (a). Each region consists of a number of subnets connected
to a common gateway. Each subnet is modelled as a star topology with 5 machines
connected to a subnet router. For the tree-based protocol, each region has a repair
server connected to the gateway of that region. Figure 7.1 (b) illustrates the internal
topology of a region. Two regions are connected if there is a link connecting their
gateways. Such a link is called an inter-region link. It has a bandwidth of 1Mbps
and a propagation delay of 50ms. In contrast, a link connecting two nodes within
the same region is called an intra-region link. It has a bandwidth of 10Mbps and a

propagation delay of 1ms. The sender is at the root of the hierarchy.



96

(a) Global topology

() Gateway @ Subnet Router @ Receiver A Repair server

(b) Internal topology

Figure 7.1: Topology used in the first set of simulations



97

We introduce message loss by assigning a uniform loss probability of 5% on every
inter-region link and 0.5% on every intra-region link. All messages are subject to
loss, including retransmission requests and repairs. However, no message is lost on
any link connecting a gateway with a repair server. Consequently, a repair server
receives any message that is received by at least one member in its region. This is
the optimal case for a tree-based protocol. Table 7.2 shows the link characteristics

in the first set of simulations.

Table 7.2: Link characteristics in the first set of simulations

| type | bandwidth | delay | loss rate |

inter-region link | 1Mbps 50ms | 5%
intra-region link | 10 Mbps Ims | 0.5%

The topologies used in the second set of simulations are transit-stub networks
generated using the GT-ITM network generator [CDZ97]. Links within transit do-
mains are set to a bandwidth of 45Mbps to simulate multicast backbones. Links
within stub domains have a bandwidth of 10Mbps. Links connecting transit do-
mains to stub domains have a bandwidth of 8 M bps. Each direction of a link has a
queue limit of 16 packets. All receivers are in stub domains, including the sender.
Each stub domain is a local region. For the tree-based protocol, each stub domain
also has a repair server connected to the root of that domain.

We introduce background traffic by establishing TCP connections between ran-
domly selected nodes in the network. For each TCP connection, an FTP application
is set up to transfer a file with infinite size. The background traffic caused observed

loss rates between 0.71% and 8.02% on links connecting transit domains to stub



98

domains, with a median loss rate of 4.29%. The loss rates for links within stub do-
mains vary from 0% to 1.29%, typically around 0.32%. No message loss is observed
on backbone links. In order to be fair to tree-based protocols, no background traffic
is introduced on any link connecting a repair server with the root node of its region.
Again, this is the optimal case for tree-based protocols. Table 7.3 shows the link

characteristics in the second set of simulations.

Table 7.3: Link characteristics in the second set of simmulations

‘ type ‘ bandwidth ‘ loss rate ‘

transit-transit link | 45Mbps 0%
transit-stub link 8 Mbps 0.71% — 8.02%
stub-stub link 10Mbps 0% — 1.29%

In both sets of simulations, members exchange session messages to form the
error recovery hierarchy as described in Chapter 5. Each simulation starts with a
bootstrap period of 30 seconds during which the sender multicasts a global session
message every second to let each receiver measure its hop counts from the sender.
After the bootstrap period, the sender starts sending 1K byte data messages at a
constant rate of 50 messages per second. The sender keeps sending data messages
for 10 minutes during each simulation run. A total of 30000 messages are received
at each receiver. Messages are delivered to the application in FIFO order.

Both RRMP and TRMP use a mixture of unicast and regional multicast for
repair messages. In the simulation, each local region is assumed to be in a different
administrative domain and administrative scoping is used to restrict the scope of a

regional multicast.



99

7.2 Load Balance

First we compare the load of request and repair traffic between the two protocols. The
results are shown in Figure 7.2 and 7.3. Figure 7.2 compares the number of request
messages received by a repair server in the TRMP protocol with the maximum
number of request messages received by a member in the RRMP protocol during
the simulation. Figure 7.3 compares the number of repair messages sent by a repair
server in the TRMP protocol with that sent by the worst-case member in the RRMP
protocol. The parameter A for RRMP is set to 4. As can be seen from the figures,
for both sets of simulations, the load on the repair server increases linearly with the
group size for TRMP. This is because the repair server bears the entire burden of
error recovery for its region. In contrast, the load for RRMP decreases slightly with
the group size. This is because the probability that a member receives a remote
request decreases with its region size, for any given \.

One way to reduce the load on a repair server is to split a large region into several
small ones. This is effective if all members in the region have roughly the same loss
rate. Otherwise a single member suffering a high loss rate can put a heavy burden
on its repair server even after the split. This is shown in Figure 7.4 for a group of
160 members when the loss rate of one receiver is increased from 1% to 28%.2 We
compare the number of repair messages sent to this lossy receiver by its repair server
in TRMP with that sent by the worst-case member in RRMP. (The figure for request
load is similar and hence omitted.) As can be seen from the figure, a lossy receiver
can have a significant impact on its repair server in TRMP but only a limited impact

on its neighbors in RRMP.

2This is in addition to any congestion loss caused by background traffic.



100

w w b B (6]
o [$2) o o o
T T T
=43
T 31|
==
o]
\ \ \ \

#requests/sec received
N N
[=] (%))
T T
. .

_
[$))
T
L

10r 1
5 ]
0 | f Y Y Y Y

60 80 100 120 140 160
group size
Test I: Tree topology, random loss
50 :
- RRMP

45/ = TRMP ]

4o0r ]

W
(63
T
L

w
o
T
L

n
(=)
T
L

#requests/sec received
3
T
.

"y
(o))
T
L

10+ b
il v\v\v—v\v—v 1
0 , , \ \ | |

60 80 100 120 140 160
group size

Test II: Transit-stub topology, congestion loss

Figure 7.2: Comparison of request traffic received by a repair server in TRMP with
that received by the worst-case member in RRMP when the group size increases.



101

- RRMP
251 -~ TRMP 1
201 8
€
a
9 15¢ 8
Q
@
©
[oR
[
&£ 10f 8
5F ,
0 Il Il Il Il Il Il
60 80 100 120 140 160
group size
Test I: Tree topology, random loss
- RRMP
251 -~ TRMP 1
201 8
€
a
Q15F 8
@
@
k=
Q.
[
£10F 8
5F ,

0 . . . i Y
60 80 100 120 140 160

group size

Test II: Transit-stub topology, congestion loss

Figure 7.3: Comparison of repair traffic sent by a repair server in TRMP with that
sent by the worst-case member in RRMP when the group size increases.



102

20H =~ RRMP R
—©— TRMP

#repairs/sec sent

[ Iz gy 4?*4?’—’%*?’—’?
7 10 13 16 19 22 25 28
loss rate (%)

-
S

Test I: Tree topology, random loss

20H =~ RRMP R
—©— TRMP

185 1

#repairs/sec sent

= IR S— R — A A A
0
1 4 7 10 13 16 19 22 25 28
loss rate (%)

Test II: Transit-stub topology, congestion loss

Figure 7.4: Comparison of repair traffic sent to a lossy receiver by a repair server in
TRMP with that sent by the worst-case member in RRMP.



103

Another way to reduce the load on a repair server is to use a mixture of unicast
and regional multicast for retransmissions. For example, in the RMTP protocol, a
repair server multicasts a repair message if it has received several requests for that
message. Again, this approach is ineffective if a single member suffers from a high

loss rate.

7.3 Recovery Latency

Recovery latency is defined as the interval between the time a loss is detected and
the time it is repaired. Each member measures the average recovery latency over all
message loss it experienced during the simulations. We compute the ratio of recovery
latency in RRMP to that in TRMP memberwise. Figure 7.5 shows the average ratio
for different values of A when the group size increases. As can be seen from the
figure, there is an observable performance penalty for RRMP due to randomization
when A = 1 or 2. This is because for small A there is a substantial risk that no
remote request is sent when an entire region missed a message, leading to increased
recovery latency. The analysis in Chapter 4 indicates that the probability of this
happening decreases exponentially with A. This is confirmed in Figure 7.5, which
shows that the latency of RRMP improves when A increases. When A\ = 4, the
latency of RRMP is almost as good as that of TRMP. In fact, in the second set
of simulations the latency of RRMP is slightly better than that of TRMP. This is
because sending multiple remote requests improves robustness against loss of request
and repair messages. For any given A, the latency of RRMP does not increase with

group size, which indicates that the algorithm scales well.



104

1.751

o

AW =

1.251

A

ratio of latency (RRMP/TRMP)

0.75r

0.5 y '

Il Il Il Il
60 80 100 120 140 160
group size

Test I: Tree topology, random loss

1.75¢

SO =

1.5¢

P
I

1.251

l

ratio of latency (RRMP/TRMP)

0.75r

0.5 y '

L L L L
60 80 100 120 140 160
group size

Test II: Transit-stub topology, congestion loss

Figure 7.5: Error recovery latency



105

7.4 Repair Duplication

In RRMP, each member calculates the percentage of repair messages it has received
that are duplicates. The result is averaged over all receivers in the group. Figure 7.6
shows that the percentage of duplication is low and decreases with group size, for any
given \. As described in Chapter 4, duplicate repairs can be generated due to (among
other reasons) the concurrent execution of local recovery and remote recovery: upon
detection of a loss, a receiver sends a remote request with probability A/n. If the lost
message is later recovered locally, the repair from the remote member will become a
duplicate. The number of duplicates in this case decreases with n but increases with
A. Hence the protocol has better performance for large regions.

Clearly there is a trade-off between recovery latency and message duplication
controlled by the parameter \: large A\ reduces recovery latency at the price of a
higher number of duplicate repairs. On the other hand, small A reduces the number of
duplicate repairs but leads to longer recovery latency. This trade-off is demonstrated
in Figure 7.7 for a group of 160 members when A is increased from 1 to 4 with an
increment of 0.5 at each step. The figure shows that, when A\ = 4, the recovery
latency of RRMP is comparable to that of TRMP, while its percentage of duplicate

repairs is within 10%. We believe that this is a low overhead for enhanced robustness.

7.5 Local Recovery

As discussed in Chapter 4, one problem with a tree-based protocol is that its per-
formance depends on the positions of repair servers. So far in the simulation tests

the repair servers have been placed at the optimal positions: they are connected to



106

20 T
- A=1
18k —-©- A=2
—4— =3
16} - A=4

—_
IS
T

—_
N
T

percentage of duplicate repairs (%)
(2] [ee] 5
T T T

S
T

N
T

o

L L L L
80 100 120 140 160
group size

(o]
o

Test I: Tree topology, random loss

ISR
E NI VRN

percentage of duplicate repairs (%)
S ®
/// R

Il Il Il
80 100 120 140 160
group size

(o]
o

Test II: Transit-stub topology, congestion loss

Figure 7.6: Repair duplication



107

ratio of latency (RRMP/TRMP)
S b w0 ®» N @

—_
T
I

091 1

0.8 . . . . .
2 3 4 5 6 7 8

percentage of duplication (%)

Test I: Tree topology, random loss

ratio of latency (RRMP/TRMP)
- 4 M w o
L L L L L L

o
©
T

L

4 5 6 7 8 9 10
percentage of duplication (%)

0.8,
3

Test II: Transit-stub topology, congestion loss

Figure 7.7: Trade-off between recovery latency and repair duplication for different
values of .



108

the root of the multicast subtree in their regions. However, in practice it may be
difficult to predict the topological structure of the underlying multicast tree at the
transport layer. If a repair server is placed at an inappropriate position, it may lead
to poor locality in error recovery. We study the behavior of TRMP in such situations
by moving a repair server to the left branch of the multicast tree in its region rather

than connecting it to the root. This is illustrated in Figure 7.8.

/’\{K./\

@ Router @Receiver A Repair server

Figure 7.8: Suboptimal position of a repair server: the server is placed at the left
branch of the multicast tree in its region rather than being connected to the root.

We introduce background traffic by establishing F'TP applications between ran-
domly selected nodes within each region. However, no background traffic is intro-
duced on links connecting two regions. Consequently, every message loss in this
simulation is local: it affects only a small fraction of receivers in a region. Ideally,
this message loss should be recovered within the local region. We measure the error
recovery latency at a receiver downstream from the repair server and show the re-
sults in Figure 7.9. Each dot in the figure represents one message loss. The z-axis
shows the time when the loss occurred and the y-axis shows the corresponding error
recovery latency.

The top figure indicates that the recovery latency for the TRMP protocol falls
into two ranges: when a message loss occurs on links between the receiver and its

repair server, it can be recovered fairly quickly. In contrast, when a loss occurs on



109

150

1251}

ms)

=100} ' ) 1

75¢ ]

Error recovery latency

“'7'\ er

"W ehe
i S

L L L L
0 100 200 300 400 500 600
Time (ms)

(a) TRMP

150

(ms)

100f 1
75¢ ) 1

507 ‘ ‘ . . -7

Error recovery latency

200

Time (ms)

(b) RRMP

Figure 7.9: TRMP has poor locality in error recovery when the repair servers are
placed at suboptimal positions. In contrast, a local message loss in RRMP is always
recovered locally.



110

links between the repair server and the root of the multicast subtree in its region,
it takes substantially longer to recover because the repair server needs to solicit a
retransmission from its upstream repair server in the hierarchy. The bottom figure
shows that for the RRMP protocol a message loss can always be recovered within a

local region.

7.6 Conclusion

This chapter has compared the performance of the RRMP protocol with that of a
tree-based protocol using simulation. Both protocols divide receivers in a multicast
group into local regions and organize these regions into an error recovery hierarchy.
However, simulation results indicate that the two protocols behave in very different

ways:

e In a tree-based protocol, all receivers in a local region rely on a single repair
server for error recovery. Consequently, the load on the repair server increases
with the size of the region. In contrast, RRMP achieves better load balancing
by diffusing the responsibility of error recovery among all receivers in the group.
A receiver suffering a high loss rate can put a heavy burden on its repair server
for a tree-based protocol, but has only a limited impact on its neighbors for

the RRMP protocol.

e There is a tunable trade-off between error recovery latency and repair duplica-
tion for the RRMP protocol. With appropriate configuration parameters, the
protocol can achieve comparable performance with a tree-based protocol while

providing enhanced robustness against process failures.



111

e The performance of a tree-based protocol is sensitive to the positions of its
repair servers and may suffer from poor locality in error recovery in certain
situations. In contrast, RRMP does not use any repair server. Its concurrent
execution of the local recovery phase and the remote recovery phase makes it

highly likely that a local message loss will be recovered from a local member.

In summary, our work has demonstrated that randomization is a powerful technique

to achieve high robustness and efficiency in reliable multicast communications.



Chapter 8

Experimental Results

This chapter evaluates the performance of the RRMP protocol on the UNIX platform.
Since a major design goal of the protocol is to achieve efficient error recovery on a
large multicast group, ideally we want to test the software over a wide-area network.
However, doing so requires significant administrative overhead in obtaining guest
accounts and installing the software at several institutions. Consequently, we decide
to emulate a wide area network on a group of UNIX workstations inside the Computer
Science Department at Cornell University. The topological structure of the network
is described in a configuration file. The emulator intercepts the communication
between the software and the network. It emulates wide area links by injecting
artificial delay and message loss into the communication. This allows us to study
the behavior of the protocol on a virtual network created using the local computing
facility.

The error recovery algorithm in the RRMP protocol combines our previous work

on randomized error recovery in the Bimodal Multicast protocol [BHO199] and hi-

112



113

erarchical error recovery similar to that employed by tree-based protocols. The
previous chapter has compared the performance of RRMP with that of tree-based
protocols. In this chapter, we compare the performance of RRMP with that of

Bimodal Multicast. The two protocols differ in the following ways:

e Bimodal Multicast is designed for “many-to-many” multicast applications and
does not use any hierarchical structure in its error recovery. Consequently, the
protocol will have a scalability problem in genuinely large networks. In con-
trast, RRMP focuses on “one-to-many” applications and proposes an algorithm
for establishing an error recovery hierarchy based on geographic locations of

different receivers.

e In Bimodal Multicast, a member exchanges its message history with other
members only at fixed intervals. Hence a member missing a message has to
wait until it receives history information from another member naming the
message before it can send a retransmission request. In contrast, the features
of the RRMP protocol include the concurrent execution of the local recovery
phase and the remote recovery phase as soon as a message loss is detected and

the dynamic measurements of round trip time to related members.

e In Bimodal Multicast, a member buffers received messages for a fixed amount
of time after their initial reception and then garbage collects the message. In
contrast, the RRMP protocol optimizes buffer requirements through a two-
phase buffering algorithm that explicitly addresses the variances in delivery
latency for large multicast groups. A member uses the retransmission requests

it received as feedback to allocate buffer space adaptively to messages most



114

needed in the system. The load of buffering is spread evenly among all members

in the group.

8.1 Test Description

We conduct three sets of experiments to study the behaviors of the RRMP protocol
and the Bimodal Multicast protocol. The first set of experiments compares the
amount of error control traffic sent on wide area links between the two protocols, the
second set of experiments compares their error recovery latency, and the third set of
experiments compares their buffer requirements. The parameter A for RRMP is set
to 4. The length of a gossip round for Bimodal Multicast is 100ms. There are two

topologies used in the experiments:

e ¢ single LAN: In this topology, all members in the multicast group are in a
local area network. They communicate directly over the underlying physical

network without intervention of the emulator.

e a two-LAN cluster: In this topology, members in the group are divided evenly
across two local regions. Messages sent within a local region experience the
normal delay of the underlying physical network. Messages sent between the

two regions have an additional delay of 30ms to emulate wide area links.

In both topologies, the group has one sender which multicasts 1K byte messages at
a rate of 100 messages per second. Messages are delivered to the application in FIFO

order. We introduce independent, random message loss with probability 1% at each



115

member (except the sender). This is in addition to any message loss experienced in

the underlying physical network.

8.2 Inter-region traffic

First we compare the amount of traffic sent on wide area links between the two
protocols. The experiment consists of a group of 30 members spread evenly in two
local regions. We measure the number of error control messages (gossips, requests,
and repairs) sent between the two regions. The results are shown in Figure 8.1. The
z-axis shows the times when the measurements were taken and the y-axis shows
the number of error control messages per second. As can be seen from the figure,
Bimodal Multicast introduces a high volume of inter-region traffic. This is because
its error control strategy ignores topological information of the underlying network: a
member selects its gossip destination uniformly at random from all other members in
the group. In contrast, each region in the RRMP protocol only generates a constant
number of error control messages outside the region. Hence it substantially reduces
the traffic load on wide area links.

In the second experiment, we increase the group size from 8 members to 30
members with an increment of 2 at each step. For each group size the set of members
are distributed evenly between the two regions. We investigate the impact of the
group size increase on inter-region traffic. Figure 8.2 shows that the amount of
traffic climbs rapidly with the Bimodal Multicast protocol, while it remains relatively

constant for the RRMP protocol.



116

300

—— Bimodal Multicast
- - RRMP

2501 b

- — N
o o o
o o o
T T T
I I I

Error control traffic (#msg/sec)

a
o
T
I

/\’“/“///\\/’w«¥/\\’\ NEVEZEN

0 L v L LN
0 20 40 60 80 100
Time (sec)

I .
R AR R

Figure 8.1: Comparison of error control traffic on wide area links between Bimodal
Multicast and RRMP in a group of 30 members spread evenly in two local regions.

200

J —6— Bimodal Multicast

180/l =~ RRMP 1

—_

[o2]

o
T

-

N

o
T

—_

n

o
T

—_

o

o
T

o]
o
T

[o2]
o
T

Error control traffic (#msg/sec)

201 7

o--8--p--—¥8%- -0 - 8- -g - 0- -5 - -0—- - 8- -0

Il Il Il Il Il Il Il Il

8 10 12 14 16 18 20 22 24 26 28 30
Group size

o

Figure 8.2: Comparison of error control traffic on wide area links between Bimodal
Multicast and RRMP when the group size increases from 8 members to 30 members.



117

8.3 Error recovery latency

We measure the interval between when a receiver observes a gap in its sequence
number space and when the corresponding missing message is recovered. We compare
the error recovery latency in Bimodal Multicast with that in RRMP. We start with a
group of two members in a local area network, one of which is the sender. The sender
is sending 1K byte messages at a rate of 100 messages per second. We introduce
random message loss with probability 1% at the receiver. Figure 8.3 shows the
distribution of error recovery latency for the two protocols. The top figure indicates
that the latency for the Bimodal Multicast protocol spreads over a wide range. This
is because each member exchanges message history with other members only at fixed
intervals (100ms in the current implementation). If a message is lost immediately
after the sender has sent its message history to the receiver, the receiver needs to wait
until the next gossip round before it can solicit a retransmission. If message losses
occur uniformly over time, on average the receiver needs to wait for 50ms before
sending a request. Since the latency between two machines in a local area network is
typically much smaller than 50ms, the gossip interval becomes the dominant factor.
In contrast, a receiver in the RRMP protocol starts sending requests as soon as it
detects a message loss. The bottom figure indicates that most message losses are
recovered very quickly.

An obvious solution to improve the performance of the Bimodal Multicast pro-
tocol is to reduce the gossip round interval so that members in the group exchange
message history more frequently. Although this allows a receiver to solicit a retrans-

mission faster, it increases the amount of network bandwidth consumed by gossip



118

100

90 7

80 7

701 7

50 7

30 7

frequency of occurence (%)

0 20 40 60 80 100
error recovery latency (ms)

(a) Bimodal Multicast

100

frequency of occurence (%)

1 2 3 4 5 6 7 8 9 10
error recovery latency (ms)

(b) RRMP

Figure 8.3: Comparison of error recovery latency between Bimodal Multicast and
RRMP in a local area network. The group consists of one sender and one receiver.
The scales on the z-axis of the two figures are different.



119

messages. This is especially problematic in a wide area network as demonstrated by
results shown in the previous section.

In the second experiment, we increase the group size to 30 members and inves-
tigate its impact on error recovery latency. Figure 8.4 shows the results on two
topologies: a single LAN and a two-LAN cluster. The z-axis is the error recovery
latency in milliseconds and the y-axis is the percentage of message losses which are
recovered within the corresponding amount of time.

The figure indicates that error recovery latency in the Bimodal Multicast pro-
tocol (the top figure) is significantly higher than that in the RRMP protocol (the
bottom figure). In particular, a substantial fraction of message losses in the Bimodal
Multicast protocol take longer than one gossip round to recover even when all mem-
bers are in a local-area network. This is due to the randomized nature of its gossip
algorithm. Recall that a member in the Bimodal Multicast protocol sends its history
of received messages to a randomly selected member in the group. On average, a
member can expect to receive a gossip message from some other member in each
round. However, it is possible that a member does not receive any gossip message
due to randomization. Let n be the size of the multicast group and p the probability

that a member receives no gossip message in a particular round. We have:

1
n—1

)nfl

p=(1-

Since a member makes an independent choice to select its gossip destination in each
round, the probability that a member receives no gossip message in k& consecutive
rounds is p*. Table 8.1 shows this probability for different values of n and k. For

example, the table indicates that when the group has 32 members the probability



120

100 T —

90F - 1

701 g — single LAN 1
’ - - two-LAN cluster
60 , ,

50 / i

Percentage (%)

40+ / 7

30 7

200 /7 1

0 100 200 300 400 500
Error recovery latency (ms)

(a) Bimodal Multicast

100 : :

— single LAN
— - two-LAN cluster

Percentage (%)

0 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10

Error recovery latency (ms)

(b) RRMP

Figure 8.4: Comparison of error recovery latency between Bimodal Multicast and
RRMP in a group of 30 members. The scales on the z-axis of the two figures are
different.



121

for a member to receive no gossip message in two consecutive rounds is 13.1%. Con-
sequently, messages lost during this period may take a long time to recover. On the
other hand, it is also possible for a member to receive multiple gossip messages in
one round, in which case the error recovery latency may be reduced.

Table 8.1: Probability that a receiver receives no gossip message in k consecutive
rounds for different group sizes.

n=4|n=8|n=16|n=32|n=64 | n=128
k=11]29.6% | 34.0% | 35.5% | 36.2% | 36.5% 36.6%
k=21 88% |11.6% | 12.6% | 13.1% | 13.3% 13.4%
k=3 26% | 3.9% 4.5% 4.7% 4.9% 4.9%
k=4| 08% | 1.3% 1.6% 1.7% 1.8% 1.8%

When the 30 members are divided evenly into two local regions, error recovery
latency for the Bimodal Multicast protocol has increased noticeably. This is because
the protocol does not utilize any topological information of the multicast group. Con-
sequently, a member missing a message may solicit a retransmission from a remote
member even if the lost message can be recovered from its neighbors. In contrast,
the RRMP protocol organizes members in the group into an error recovery hierarchy
based on their geographical locations. A member missing a message concurrently
executes both the local error recovery phase and the remote error recovery phase.
This increases the likelihood that a local message loss will be repaired by a local

member. The bottom figure shows that the resulting error recovery latency for both

topologies remains very low.



122

8.4 Buffer Requirements

Finally we compare the amount of buffer requirements in the Bimodal Multicast
protocol with that in the RRMP protocol. The experiment was conducted in a group
of 30 members in a local area network. The sender sends 1K byte messages at a rate
of 100 messages per second. We introduce random message loss with probability 1%
at each receiver and show the results in Figure 8.5. The z-axis indicates the times
when the measurements were taken and the y-axis indicates the number of messages
a member keeps in its buffer.

160

—— Bimodal Multicast
- - RRMP

140

120+ i
i
g 100,
#*
[0]
& 80
Q.
2]
8
5 601
M

40+ .

. Iy NS ~ - ‘A ~
VVVVVV \/\/A/\/\( - /\/\ ’\ \\ //\1// \V/\/\/\/ \/// . /\\/\\,’\/\/,‘/\’ \/"’
20 v o \ B
0 \ \ \ \
0 20 40 60 80 100

Time (sec)

Figure 8.5: Comparison of buffer requirements between Bimodal Multicast and
RRMP in a group of 30 members in a local area network.

Recall that the Bimodal Multicast protocol uses a simple buffering policy where a
member buffers received messages for a fixed amount of time (10 rounds in the current
implementation). The figure shows that the number of messages in a member’s buffer

is around 100. In contrast, the RRMP protocol divides its buffer space into two parts:



123

a short-term buffer and a long-term buffer. When a member first receives a message,
it keeps the message in its short-term buffer until no request for this message has been
received for a certain period of time (50ms in the current implementation). Then
the member makes a random choice to become a long-term bufferer with probability
C/n. In this experiment, we set C = 6 and n = 30. Hence on average 20% of the
members in a region serve as long-term bufferers. A long-term bufferer keeps the
message for 1 second. The figure shows that the resulting buffer requirements are
substantially smaller than that for the Bimodal Multicast protocol.

The amount of buffer space in the Bimodal Multicast protocol can be reduced if
a member buffers received messages for a shorter period of time. In order to be com-
parable to the RRMP protocol, a member should buffer a message for approximately
250ms. However, Figure 8.4 shows that a noticeable fraction of message losses in the
Bimodal Multicast protocol may take longer than 250ms to recover. Consequently,
the application will experience a higher loss rate.

One concern with the two-phase buffering scheme in the RRMP protocol is its
potential negative impact on error recovery latency: after a message has become
idle (i.e. no request for this message has been received for 50ms), only a subset of
members in a local region will continue to buffer the message. If a member discards a
message and then later receives a retransmission request for that message, it cannot
answer the request itself and needs to search for a bufferer of the message. This
is usually not a problem when all members are in a local area network, or when
message losses occur randomly and independently, because Figure 8.4 demonstrates
that error recovery latency in this case is much smaller than 50ms. The situation is

quite different in a wide area network where all members in a region may miss the



124

same message. 1o study the behavior of the RRMP protocol under such situations,
we conduct another experiment in which the 30 members are divided evenly into
two local regions. Messages sent between the two regions have a delay of 30ms and
a random loss probability of 5%. Messages sent within a local region have no loss.
Because all members in the downstream region will miss the same message, the lost
message can only be repaired through the remote recovery phase. Due to the long
latency between the two regions (the round trip time is larger than 50ms), a member
in the sender’s region may receive a remote request from a downstream member,
asking for a message that it has already discarded. In this case it needs to search for
a bufferer of the message.

As a target for comparison, we implemented a single-phase buffering scheme in
which all members continue to buffer an idle message for 1 second (i.e. every member
is a long-term bufferer). We compare the error recovery latency between the two
schemes and show the results in Figure 8.6. The z-axis is the error recovery latency
in milliseconds and the y-axis is the percentage of message losses that are recovered
within the corresponding amount of time. The figure indicates that the two-phase
buffering scheme incurs only a small performance penalty in error recovery latency

while providing a substantial reduction in buffer requirements.

8.5 Conclusion

This chapter has compared the performance of RRMP with that of Bimodal Mul-
ticast on the UNIX platform. The RRMP protocol is inspired by the Bimodal

Multicast protocol and inherits its idea of randomized error recovery. The major



125

100 -
90F o 1
8of ! |
70t , — single-phase buffering | |

’ - - two-phase buffering

60 7 i

Percentage (%)
(o))
o

401 / 1

301 / 7

0 4 1 1 1 1 1 1 1 1 1
60 61 62 63 64 65 66 67 68 69 70

Error recovery latency (ms)

Figure 8.6: Comparison of error recovery latency with two buffering schemes.

improvements include the use of an error recovery hierarchy to achieve better scala-
bility on a wide-area network, the concurrent execution of local recovery and remote
recovery to reduce recovery latency, and an adaptive two-phase buffering scheme to
optimize buffer requirements. Experimental results have demonstrated that these

improvements can have a significant impact on the performance of the protocol.



Chapter 9

Conclusion and Future Work

This dissertation has studied the problem of providing reliable multicast service in
large groups. We started by discussing several challenges in the design of efficient

error recovery algorithms:
e How to avoid message implosion?

e How to confine the impact of a message loss to the region where the loss has

occurred?
e How to manage buffer space efficiently?

We then examined previous work in the reliable multicast literature and found that
existing protocols only partially addressed these challenges. For example, the SRM
protocol avoids message implosion through a randomized back-off algorithm at the
expense of increased error recovery latency. In addition, it suffers from a crying baby
problem due to its lack of local recovery. A tree-based protocol provides local recov-

ery by organizing receivers into local regions and selecting a repair server for each

126



127

region. The protocol still suffers from a regional implosion problem because a repair
server bears the entire responsibility of error recovery for a local region. Moreover,
the deployment of repair servers requires topological information of the underlying
multicast tree which is not available at the transport layer. Router-assisted reli-
able multicast protocols achieve high performance and scalability by utilizing new
functionalities at network routers. Whether these extra functionalities can become
widely deployed remains to be seen.

After an overview of previous work, we described the Bimodal Multicast proto-
col developed in part by the author. The protocol achieves superior scalability over
virtual synchrony protocols through random gossiping technique. In this protocol,
members periodically exchange history of received messages with randomly selected
members and solicit any message they have missed. Experimental results demon-
strate that the protocol has strong throughput properties and is highly robust in the
presence of network failures.

We then proceeded into the main focus of the dissertation: the Randomized
Reliable Multicast Protocol (RRMP). RRMP organizes receivers into a hierarchy of
local regions without imposing any specific structure inside a region. The hierarchy
formation algorithm is based on periodic exchange of global session messages and
local session messages among all receivers in the group. It allows a receiver to obtain
an approximation of receivers in its local region as well as receivers in its parent
region. The error recovery algorithm in RRMP consists of the concurrent execution
of the local recovery phase and the remote recovery phase: a receiver missing a
message sends its request to randomly selected receivers in its local region and, with

a small probability, to some randomly selected receiver in a remote region. The



128

protocol eliminates message implosion because the responsibility of error recovery is
disseminated among all receivers in the group. In addition, the concurrent execution
of the two error recovery phases increases the likelihood that a local message loss will
be repaired by a local member. The reliability of the protocol depends on statistical
properties of its randomized algorithm which were formally analyzed and can be
tuned according to application requirements.

RRMP optimizes buffer management through an innovative two-phase buffering
scheme: feedback-based short-term buffering and randomized long-term buffering.
When a message is first introduced into the system, every member that receives
the message buffers it for a short period of time in order to satisfy retransmission
requests from its neighbors. Later when the message has been received by almost all
members in a region, only a small subset of members in this region continue to buffer
the message. The algorithm effectively reduces buffer requirements by adaptively
allocating buffer space to messages most needed in the system and by spreading the
load of buffering among all members in the group.

Looking ahead, there are several directions for future research. FError recov-
ery in the RRMP protocol is retransmission-based. Recently, Forward Error Cor-
rection (FEC) has been proposed in several reliable multicast protocols as an effi-
cient technique for providing error recovery of uncorrelated loss in large multicast
groups [McA90, Riz97, NBT98]. In these protocols, the sender takes k packets from
the application and generates n encoded packets in such a way that any subset of k
encoded packets are sufficient to reconstruct the original packets. The advantage of
this approach is that a receiver can recover from up to n — k packet losses without

the need to ask for retransmissions. Hence it creates an illusion of a network sub-



129

stantially more reliable than the underlying physical network. Moreover, the sender
can simultaneously repair distinct message losses at different receivers by multicas-
ting a single encoded packet to the group. Hence this approach has the potential
of significantly reducing bandwidth consumption due to error control messages. It
would be interesting to investigate how FEC techniques could be incorporated into
the RRMP protocol to further improve its scalability.

A major problem in constructing an efficient error recovery hierarchy involves
estimating the geographical locations of different receivers. A solution proposed
in [RM99a, RM99b)] is to infer the topological structure of the underlying multicast
tree based on message loss correlation across the receiver set. In this algorithm,
each receiver records the sequence of messages it has missed. This is called the
lossprint of the receiver. Since a message loss along an upper link of a multicast
distribution tree will cause all downstream receivers to miss the same message, two
receivers that share a great portion of their multicast paths from the sender are likely
to have a strong correlation in their message losses. Receivers in the group period-
ically exchange lossprints to compute their loss correlation. The algorithm groups
receivers with similar loss patterns into a loss neighborhood so that the scope of
error recovery can be localized within this neighborhood without disturbing the rest
of the group!. A nice feature of this approach is that it relies solely on information
available at the transport level without requiring additional support from network
routers. Consequently, it can be integrated into protocols like RRMP as a compo-

nent for constructing the error recovery hierarchy. Moreover, information about loss

!The paper does not propose a specific protocol to perform error recovery. Rather
the algorithm is designed as a component that can be used by reliable multicast
protocols to construct an error recovery hierarchy.



130

correlation at different receivers can be used to guide the error recovery process. For
example, a receiver missing a message may use such information to decide where to
send its retransmission requests. It would be interesting to see how such a protocol

would perform in practice.



BIBLIOGRAPHY

[ADKM92]

Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis:
A communication sub-system for high availability. In International
Symposium on Fault-Tolerant Computing, July 1992.

[AMMS*95] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Cia-

[AP99]

[Bai75]

[BHOT99]

[Bir93]

[Bir97]

[BJ87al

[BJ87D)

rfella. The Totem single-ring ordering and membership protocol. In
ACM Transactions on Computer Systems, November 1995.

Mark Allman and Vern Paxson. On estimating end-to-end network
path properties. In Proceedings of ACM SIGCOMM, 1999.

Norman Bailey. The Mathematical Theory of Infectious Diseases and
its Applications. Hafner Press, 1975.

Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai
Budiu, and Yaron Minsky. Bimodal multicast. In ACM Transactions
on Computer Systems, May 1999.

Kenneth P. Birman. The process group approach to reliable distributed
computing. In Communications of ACM, December 1993.

Kenneth P. Birman. Building Secure and Reliable Network Applica-
tions. Manning Publishing Company and Prentice Hall, 1997.

Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual syn-
chrony in distributed systems. In ACM Symposium on Operating Sys-
tems Principles, 1987.

Kenneth P. Birman and Thomas A. Joseph. Reliable communication in
the presence of failures. In ACM Transactions on Computer Systems,
February 1987.

131



[BvR94]

[CDZ97]

[CM99)]

[CTY0]

[DC90]

[DGH*87]

[Dur94]

[FIM*95]

[For95]

[GROO]

[GT92]

[Han97]

132

Kenneth P. Birman and Robbert van Renesse. Reliable distributed
computing with the ISIS toolkit. In IEEE Computer Society Press,
1994.

Kenneth Calvert, Matthew Doar, and Ellen Zegura. Modeling Internet
topology. In IEEE Communications Magazine, June 1997.

Adam M. Costello and Steven McCanne. Search Party: Using random-
cast for reliable multicast with local recovery. In Proceedings of IEEE
INFOCOM, 1999.

David D. Clark and David L. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In Proceedings of ACM SIG-
COMM, 1990.

Stephen E. Deering and David R. Cheriton. Multicast routing in data-
gram internetworks and extended LANs. In ACM Transactions on
Computer Systems, May 1990.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated database maintenance. In ACM Symposium
on Principles of Distributed Computing, 1987.

Richard Durrett. The Essentials of Probability. Duxbury Press, 1994.

Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and
Lixia Zhang. A reliable multicast framework for light-weight sessions
and application level framing. In Proceedings of ACM SIGCOMM,
1995.

XTP Forum. Xpress transfer protocol specification. In XTP Rev 4.0,
March 1995.

Katherine Guo and Injong Rhee. Message stability detection for reliable
multicast. In Proceedings of IEEE INFOCOM, 2000.

Richard Golding and Kim Taylor. Group membership in the epidemic
style. Technical report, University of California at Santa Cruz, 1992.

Mark Handley. An examination of MBone performance. In ISI Re-
search Report ISI/RR-97-450, April 1997.



[Hay98]

[Hot97]

[HSC95]

[Jac88]

[Ler00]

[LESZ98]

[LLSG92]

[LOMO94]

[LPGLAYS]

[McA90]

[Mil91]

[NBT98]

133

Mark Hayden. The Ensemble System. Ph.D. dissertation, Cornell Uni-
versity, January 1998.

Markus Hofman. Enabling group communication in global networks.
In Proceedings of Global Networking, 1997.

Hugh Holbrook, Sandeep Singhal, and David Cheriton. Log-based
receiver-reliable multicast for distributed interactive simulation. In
Proceedings of ACM SIGCOMM, 1995.

Van Jacobson. Congestion avoidance and control. In Proceedings of
ACM SIGCOMM, 1988.

Xavier Leroy. The Object Caml system release 3.00, April 2000.
http://pauillac.inria.fr/ocaml/.

Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia Zhang.
Local error recovery in SRM: Comparison of two approaches. In
IEEE/ACM Transactions on Networking, December 1998.

Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat.
Providing availability using lazy replication. In ACM Transactions on
Computer Systems, November 1992.

Kurt Lidl, Josh Osborne, and Joseph Malcome. Drinking from the
firehose: Multicast USENET news. In Proceedings of USENIX Winter

Conference, January 1994.

Brian Neil Levine, Sanjoy Paul, and J.J. Garcia-Luna-Aceves. Orga-
nizing multicast receivers deterministically by packet-loss correlation.
In Proceedings of ACM Multimedia, 1998.

Anthony J. McAuley. Reliable broadband communication using a burst
erasure correcting code. In Proceedings of ACM SIGCOMM, 1990.

David L. Mills. Internet time synchronization: The network time pro-
tocol. In IEEE Transactions on Communications, October 1991.

Jorg Nonnenmacher, Ernst W. Biersack, and Don Towsley. Parity-
based loss recovery for reliable multicast transmission. In IEEE/ACM
Transactions on Networking, May 1998.



[ODS1]

[OVRBX99]

[Pax97a]

[Pax97b]

[Pit87]

[PPV98]

[PSLBY7]

[Rei94]

[Riz97]

[RM99a]

[RM99b)]

[SEFZ98]

134

Derek C. Oppen and Yogen K. Dalal. The Clearinghouse: A decen-
tralized agent for locating named objects in a distributed environment.
Technical report, Xerox, 1981.

Oznur Ozkasap, Robbert van Renesse, Kenneth P. Birman, and Zhen
Xiao. Efficient buffering in reliable multicast protocols. In Interna-
tional Workshop on Networked Group Communication, November 1999.

Vern Paxson. Automated packet trace analysis of TCP implementa-
tions. In Proceedings of ACM SIGCOMM, 1997.

Vern Paxson. End-to-end Internet packet dynamics. In Proceedings of
ACM SIGCOMM, 1997.

Boris Pittel. On spreading a rumor. In STAM Journal of Applied Math-
ematics, February 1987.

Christos Papadopulos, Guru Parulkar, and George Varghese. An error
control scheme for large-scale multicast applications. In Proceedings of
IEEE INFOCOM, 1998.

Sanjoy Paul, Krishan Sabnani, John Lin, and Supratik Bhattacharyya.
Reliable multicast transport protocol (RMTP). In IEEE Journal on
Selected Areas in Communication, special issue on Network Support
for Multipoint Communication, 1997.

Michael K. Reiter. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. In ACM Conference on Computer and
Communications Security, November 1994.

Luigi Rizzo. Effective erasure codes for reliable computer communica-
tion protocols. In ACM Computer Communication Review, April 1997.

Sylvia Ratnasamy and Steven McCanne. Inference of multicast routing

trees and bottleneck bandwidths using end-to-end measurements. In
Proceedings of IEEE INFOCOM, 1999.

Sylvia Ratnasamy and Steven McCanne. Scaling end-to-end multicast
transports with a topologically-sensitive group formation protocol. In
International Conference on Network Protocols, 1999.

Puneet Sharma, Deborah Estrin, Sally Floyd, and Lixia Zhang. Scal-
able session messages in SRM using self-configuration. Technical report,
University of Southern California, 1998.



[UCB]

[vVRBMY96]

[VRMH98]

[XB01a]

[XBO1b]

[YGS95]

[YKTO6]

135

UCB/LBNL/VINT. network simulator ns (version 2). http://www-
mash.cs.berkeley.edu/ns/.

Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus:

A flexible group communication system. In Communications of ACM,
April 1996.

Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style
failure detection service. In Proceedings of Middleware, 1998.

Zhen Xiao and Kenneth P. Birman. Providing efficient, robust error
recovery through randomization. In International Workshop on Applied
Reliable Group Communication, April 2001.

Zhen Xiao and Kenneth P. Birman. A randomized error recovery algo-
rithm for reliable multicast. In Proceedings of IEEE INFOCOM, April
2001.

Rajendra Yavatkar, James Griffioen, and Madhu Sudan. A reliable dis-
semination protocol for interactive collaborative applications. In Pro-
ceedings of ACM Multimedia, 1995.

Maya Yajnik, Jim Kurose, and Don Towsley. Packet loss correlation

in the MBone multicast network: Experimental measurements and
markov chain models. In Proceedings of IEEE INFOCOM, 1996.



