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ABSTRACT
The commonly agreed Zipf-like access pattern of Web work-
loads is mainly based on Internet measurements when text-
based content dominated the Web traffic. However, with dra-
matic increase of media traffic on the Internet, the inconsis-
tency between the access patterns of media objects and the
Zipf model has been observed in a number of studies. An
insightful understanding of media access patterns is essential
to guide Internet system design and management, including
resource provisioning and performance optimizations.

In this paper, we have studied a large variety of media work-
loads collected from both client and server sides in different
media systems with different delivery methods. Through ex-
tensive analysis and modeling, we find: (1) the object refer-
ence ranks of all these workloads follow the stretched expo-
nential (SE) distribution despite their different media systems
and delivery methods; (2) one parameter of this distribution
well characterizes the media file sizes, the other well char-
acterizes the aging of media accesses; (3) some biased mea-
surements may lead to Zipf-like observations on media access
patterns; and (4) the deviation of media access pattern from
the Zipf model in these workloads increases along with the
workload duration.

We have further analyzed the effectiveness of media caching
with a mathematical model. Compared with Web caching
under the Zipf model, media caching under the SE model
is far less effective unless the cache size is enormously large.
This indicates that many previous studies based on a Zipf-like
assumption have potentially overestimated the media caching
benefit, while an effective media caching system must be able
to scale its storage size to accommodate the increase of media
content over a long time. Our study provides an analytical
basis for applying a P2P model rather than a client-server
model to build large scale Internet media delivery systems.
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1. INTRODUCTION
Internet media traffic has kept increasing. It is reported

that in the recent past, video traffic on the Internet doubles
every 3-4 months [1]. Different from traditional Web traf-
fic, Internet media traffic can be delivered through a variety
of approaches, such as streaming, pseudo streaming, overlay
multicast, and P2P techniques, in addition to the commonly
used Web downloading. Unlike the widely accepted Zipf-like
access pattern of Web traffic [12], where text-based content
was dominant, existing studies on media traffic are largely
workload specific, and the observed access patterns are often
different from or even conflict with each other, due to the
variety of media delivery systems and the diversity of media
content. For example, Chesire et al. [15] and Yu et al. [32] re-
port that the access pattern of streaming media is Zipf-like in
a university campus and in a VoD system, respectively, while
Acharya et al. [9] and Cherkasova et al. [14] find that it is not
Zipf-like in a multicast-based Media-on-Demand server and in
an enterprise server, respectively. For live streaming, Veloso
et al. [29] report user interests are object driven and follow
a Zipf-like profile, while Sripanidkulchai et al. [27] report the
popularity of live media programs hosted by Akamai CDN
follows a 2-mode Zipf distribution. For P2P media systems,
Gummadi et al. [19] report that the access pattern of me-
dia workload in KaZaa system collected in a campus network
is not Zipf-like, while Iamnitchi et al. [24] report that it is
Zipf-like in another campus network. For the access pattern
of user generated video contents such as YouTube video [2],
a study of requests in a campus network by Gill et al. [17]
reports it is Zipf-like while a server log based study by Cha
et al. [13] reports a significant deviation from the Zipf model.
As a result, a number of models have been proposed to char-
acterize Internet media access patterns, such as the Zipf with
exponential cutoff model [13], fetch-at-most-once model [19],
generalized Zipf-like distribution model [28], and others.

The object access pattern has a significant impact on the
locality of references and the performance of caching in In-
ternet systems. However, due to a limited number of work-
loads (typically one or two in each study) and a constrained
scope of media traffic (e.g., enterprise server logs or requests
from a campus network), the analyses in these studies may
not be sufficient to identify a general media access pattern,
which is important for traffic engineering on the Internet and
is critical to design, benchmark, and evaluate Internet media
distribution systems. In reality, although many algorithms
and systems for media caching/proxying have been proposed,
including commercial products such as Helix Universal Proxy
[5] and Microsoft Windows Media Proxy [7], few of them are
practically used. Instead, due to the high quality require-
ment and resource demand for media delivery, current media
systems tend to over-supply or over-utilize system and band-



width resources for user satisfaction [23]. Thus, it is highly
desirable to have an insightful understanding of media access
patterns for both media system designers and network admin-
istrators.

In this study, we have analyzed a wide variety of media
workloads on the Internet. The workloads were collected
from both the client side and the server side in Web, VoD,
and P2P environments between 1998 and 2006, where the
media content is delivered using Web/P2P downloading and
unicast/multicast streaming, through P2P clients, enterprise
servers, and CDNs. The duration of these workloads ranges
from a few days to more than two years and the user popula-
tion ranges from several thousands to more than one hundred
thousand. The number of client requests ranges from tens
of thousands to hundreds of millions, the number of objects
in each workload ranges from hundreds to hundreds of thou-
sands, and the median of file sizes in each workload ranges
from a few megabytes to several hundred megabytes.

Through extensive analysis, we find that despite the differ-
ent media systems and delivery methods used, the reference
ranks of media objects in all these workloads can be well fitted
with the stretched exponential (SE) distribution. This distri-
bution has two parameters. We find that one parameter well
characterizes the media file sizes, the other parameter well
characterizes the aging of media accesses. We also analyze
factors that may affect the observed media access patterns,
such as redundant traffic filtered by a cache and extrane-
ous traffic introduced through an ad server, and show how
a biased measurement can lead to a Zipf-like observation on
media access patterns. We further analyze the evolution of
media access patterns in media systems, and find the devia-
tion of media reference rank distribution from the Zipf model
increases along with the duration of the workload.

We have further proposed a mathematical model to analyze
the performance of media caching systems with the stretched
exponential distribution. Compared with the caching of Web
objects, whose access pattern is Zipf-like, caching of media ob-
jects is far less effective, unless the cache space is enormously
large. Our study further shows that with more requests to
media objects over time, there is a great potential to im-
prove the performance of client-side caching. However, this
improvement may take months to years and consumes huge
amount of storage. This implies that a performance-effective
and cost-efficient media caching system should be capable of
scaling its storage size with the increase of its workload size
over a long time. Our study provides an analytical basis for
applying a P2P model instead of client-server model to build
large scale Internet media delivery systems.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes the workloads we use. We present the
stretched exponential model of media reference rank distribu-
tions in Section 3, and study the physical meanings of this
access pattern model in Section 4. We analyze the impact
of the stretched exponential distribution on media caching
performance in Section 5, and make concluding remarks in
Section 6.

2. WORKLOAD DESCRIPTION
In this study, we analyze a total of sixteen media workloads

collected from both client and server sides in different media
systems with different delivery methods, as outlined in Ta-
ble 1. By “client side”, we mean the client network where user
requests are sent out. Table 1 also summarizes the workload
duration, number of requests, number of clients, and num-
ber of objects for each workload. Among these workloads,
six of them were collected by ourselves. We also have the ac-
cess to two workloads available in public sources or provided
by our research collaborators. The remaining eight, with an
asterisk before the workload name in Table 1, are extracted

from the figures in the published papers due to the unavail-
ability of original data. These sixteen workloads are classified
into four categories based on different media delivery environ-
ments, summarized as follows.

The first category is “Web media”. These workloads con-
tain media requests in the Web environment, where media
objects are embedded or linked in Web pages. On these Web
pages, the majority are still common Web objects such as text,
graphics, and html files, etc. In this category, HPC-98 (ex-
tracted from Figure 7(a) of paper [14]) contains server logs
collected from the HP Corporate media server, which hosts
the streaming media objects accessed through the Web pages
of the HP corporation. Similarly, HPLabs-99 (also extracted
from Figure 7(a) of paper [14]) contains the logs of stream-
ing servers hosting HP Labs media content, accessed through
the HPLabs Web site. Similar to HPC-98, ST-SVR-01 is the
log of a large enterprise streaming server, accessed through
the company’s Web site. We collected PS-CLT-04 and ST-
CLT-04 from a large cable network hosted by a major ISP
in the United States. Workload ST-CLT-05 was collected in
a subdomain of the same network. PS-CLT-04 is a media
workload of Web downloading and pseudo streaming, which
includes the first IP packets of HTTP downloading for Win-
dows, RealNetworks, and QuickTime media files. ST-CLT-04
and ST-CLT-05 are RTSP (RFC 2326) and MMS (Microsoft’s
proprietary streaming protocol) streaming media traces col-
lected with a similar method to that by Chesire et al. [15].

The second category is “VoD media”. Different from a Web
site with a few media objects, a VoD system provides an inte-
grated environment for dedicated media services, though it is
often Web-based too. mMoD-98 contains logs of a multicast-
based Media-on-Demand video server supporting VCR func-
tions, where the major contents are video lectures and movies
(extracted from Figure 6 of paper [9]). CTVoD-04 contains
logs collected from streaming servers of a large VoD system
deployed by China Telecom, where the major contents are TV
shows and movies (extracted from Figure 13 of paper [32]).
These two VoD systems host media content themselves. We
collected IFILM-06 from the IFILM Web site [6], which pro-
vides the weekly click numbers of Web pages for IFILM video
clips, most of which are short movie trailers. These video
objects are served by a CDN via streaming. We have also col-
lected YouTube-06 from its Web site [2] by crawling summary
pages of YouTube video, where the total number of requests
of each clip (for the entire up time of YouTube site) was pub-
lished (the methodology is similar to that in [13]).

The third one is “P2P media”, collected from two kinds
of P2P systems. In KaZaa networks, users exchange files
with each other, while in a BitTorrent swarm, users exchange
chunks of the same file. KaZaa-02 is a large file transfer-
ring (larger than 100 MB, typically video files) workload over
KaZaa networks, collected in a university campus (extracted
from Figure 5 of paper [19]). KaZaa-03 is extracted from Fig-
ure 5 of paper [24], which includes music files, video clips,
and movie files of different sizes. BT-03 contains data col-
lected from two BitTorrent tracker sites, where most of the
files are large videos and DVD movies [11].

The above three categories are all on-demand media work-
loads. We have also analyzed media workloads of live stream-
ing and theater environments, categorized as “other” in our
workload set. Workload Akamai-03 consists of the references
to live streaming media programs hosted by Akamai CDN,
extracted from Figure 3 of paper [27]. Workload Movie-02
contains the 2002 U.S. movie box office ticket sales, extracted
from Figure 7(d) of paper [19]. Workload IMDB-02 is the
cumulative number of votes for top 250 movies in Internet
Movie Database (IMDB), which was downloaded from the
IMDB Web site [3].

Client side streaming media workloads often contain extra-



Table 1: Workload Summary
System Workload Delivery Workload Collection Num. of Num. of Num. of Median c
Type Name Method Duration Time Requests Objects Clients File Size

*HPC-98 streaming 29 months 11/98-04/01 666,074 2,999 131,161 14 MB 0.22
*HPLabs-99 streaming 21 months 07/99-04/01 14,489 412 2,482 120 MB 0.3

Web ST-SVR-01 streaming 122 days 04/01-07/01 169,414 2,260 41,709 15 MB 0.2
Media PS-CLT-04 downloading 9 days 08/04 196,621 53,383 6,276 1.5 MB 0.2

ST-CLT-04 streaming 9 days 09/04 61,889 18,511 4,751 2 MB 0.2
ST-CLT-05 streaming 11 days 06/05 54,984 18,634 6,238 4.5 MB 0.2

*mMoD-98 multicast 194 days 08/97-03/98 – 139 – 125 MB 0.55
VoD *CTVoD-04 streaming 219 days 05/04-12/04 21 million 6,700 150,000 300 MB 0.4

Media IFILM-06 streaming 16 weeks 03/06-07/06 62,228,780 11,872 – 2.25 MB 0.15
YouTube-06 pseudo stream all-time 10/06 692,343,054 3,981,654 – 3.4 MB 0.17

*KaZaa-02 exchange 203 days 05/02-12/02 98,997,622 633,106 24,578 300 MB 0.45
P2P *KaZaa-03 exchange 5 days 01/03 976,184 116,509 14,404 5 MB 0.14

BT-03 swarming 48 days 10/03-12/03 256,802 2,453 45,058 636 MB 0.52

*Akamai-03 live stream 3 months 10/03-01/04 70 million 5,000 – – 0.2
Other *Movie-02 – 1 year year 2002 – 250 – – 0.65

IMDB-06 – all-time 06/06/2006 – 250 – – 1.15

neous media objects that are pushed to the user mandato-
rily no matter the user wants them or not. In commercial
streaming media systems, for advertisement purposes, nor-
mally when a user clicks the meta file link of a media object
on a Web page, the media server requests a link of ad clip
from an ad server, inserts it to a dynamically generated meta
file, and then sends the meta file to the client player. Further-
more, some media servers may insert the link of flag clip—a
small video or audio object (usually less than 5 seconds) that
plays a silent audio or blank video, a static logo image, or a
quick animation—before the URL of a requested media object
and/or between two subsequent requested media files, in the
dynamically generated meta file. Ad clips are usually served
by dedicated ad servers outside the content system, while flag
clips are usually served by the same server serving program
content. However, both ad and flag media traffic is extrane-
ous to users of the media system, and do not reflect the real
user access pattern. Our study shows that although ad and
flag clips only account for a small percentage of media traffic,
they usually have significantly higher access rates than normal
content objects. In our collected client side streaming work-
loads ST-CLT-04 and ST-CLT-05, we identified and removed
ad and flag clip requests by matching the URLs in RTSP
commands with keywords such as “ads” and “logo”, “getnext”,
“next”, which indicate the purpose of these objects, as well
as by viewing/listening to the video/audio content of these
objects. For server side media workloads, the requests of ad
media are not recorded in server logs, since media servers and
ad servers are usually separate. Meanwhile, not every media
system uses flag clips, and the number of flag clips in a media
system is very small (usually 1 or 2).

3. THE REFERENCE RANK MODEL OF
INTERNET MEDIA OBJECTS

3.1 The stretched exponential of Internet me-
dia traffic

We use the rank-ordering technique to analyze the Internet
media access pattern. Figures 1, 2, and 3 show the reference
rank distributions of media objects in Web, VoD, and P2P
media systems, respectively1. In each figure, the x coordi-
nate represents the reference rank of each object, plotted in
log scale, while the y coordinate represents the number of ref-
erences to this object, plotted in both log scale (marked on

1The extraneous traffic in ST-CLT-04 and ST-CLT-05 has
been removed. The figures of workloads HPC-98, HPLabs-99,
longer duration of workload IFILM-06, Akamai-03, Movie-02,
and IMDB-06 are presented in Figure 16 of Appendix A.

the right of y-axis) and a powered scale (by a constant c, as
marked on the left of y-axis). We call the combination of log
scale in x and powered scale in y as the stretched exponential
(SE) scale.

These figures show that in log-log scale, the reference rank
distributions of all these workloads have a fat head and a thin
tail, which cannot be fitted with a straight line, indicating
they are not Zipf-like. In particular, many of them deviate
from a straight line significantly, such as Figures 2(a), 2(b),
and 3(c). However, by selecting a proper constant c, all these
workloads can be well fitted with a straight line in SE scale.
Such a distribution is called a stretched exponential distribu-
tion.

To evaluate the stretched exponential fit, we compute the
coefficient of determination of the fitting result of each work-
load, R2. As marked in the figures, R2 is very close to 1
for all workloads. For workloads with raw data accesses,
χ2 tests are conducted to check the goodness of fits. The
stretched exponential fits are accepted while Zipf-like fits are
rejected (see Appendix B of [20]). For long term workloads
with timestamps of requests, including ST-SVR-01, BT-03,
and IFILM-06, stretched exponential fits and χ2 tests are fur-
ther conducted on the reference rank distributions of objects
requested in different durations (see Section 4.2).

The probability distribution of the stretched exponential
distribution can be expressed as

P (X < x) = 1 − e
−( x

x0
)c

, (1)

where c and x0 are constants. If we rank the N objects in
the workload in descending order of their reference numbers
yi (1 ≤ i ≤ N), we have P (y ≤ yi) = i/N . So the rank
distribution can be expressed as follows

yc
i = −a log i + b (1 ≤ i ≤ N), (2)

where a = xc
0 and b = yc

1. Since the minimum number of
references to an object is 1, we can assume yN = 1 when the
number of objects in the workload, N , is large enough2. Thus

b = 1 + a log N. (3)

An SE distribution curve is a straight line in SE scale. Since
b is a normalization parameter, the shape of an SE distribu-
tion is determined by c, the stretch factor of y coordinate,
and a, the minus of the slope of the straight line in SE scale.
An SE distribution has a finite mean value (denoted as 〈x〉)

〈x〉 =

Z ∞

0

xp(x)dx = x0Γ (1 +
1

c
), (4)

2As shown in Appendix A, for server side workloads, it is
possible that yN > 1 due to the small number of objects.
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(d) ST-CLT-05

Figure 1: Reference rank distributions of media objects in Web systems
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Figure 2: Reference rank distributions of media objects in VoD systems

where p(x) = cxc−1

xc
0

e
−( x

x0
)c

is its probability density function

and Γ (α) =
R ∞

0
tα−1e−tdt is the gamma function. However,

for workloads with a limited number of objects, the deviation
of the average number of references to objects (denoted as
〈y〉) from Equation 4 can be non-trivial, especially when 〈y〉
is small (since the minimum number of references is 1, not
zero). A better estimation is

〈yse〉 = lim
N→∞

1
N

PN

i=1(1 − a log i
N

)
1

c

= lim
N→∞

R 1
1

N

(1 − a log x)
1

c dx

= e
1

a x0(Γ (1 + 1
c
) − γ(1 + 1

c
, 1

a
)),

(5)

where γ(α, x) =
R x

0
tα−1e−tdt is the lower incomplete gamma

function. Throughout this paper, the modeling analysis is
mainly based on Equation 5, while Equation 4 is only used as
an approximation for simplicity.

The stretched exponential distribution has been used to
describe many phenomena in nature and economy that do
not follow power law [25]. Although it is still empirical, in
the subsequent parts of this paper, we will show that the
stretched exponential model of Internet media reference rank
distributions has clear physical meanings. Different from the
systems studied in [25], we analyze a number of media systems
with different sizes of media files and in different lengths of
durations, and find the relations between these factors and the
parameters of the stretched exponential model, which further
supports the validity of this model.

3.2 Factors that may affect media access pat-
tern observations

In addition to user activities, the computing and networking
systems that an entire media delivery procedure involves may
affect the measurement results of media object reference rank
distributions by filtering redundant traffic (e.g., through a

proxy) or introducing extraneous traffic (e.g., through an ad
server). In this section, we study how these factors affect
the observed media access patterns, and show how a biased
measurement can lead to a Zipf-like observation as reported
in some studies before.

3.2.1 Effect of extraneous traffic
As we have shown in Section 2, the client side streaming

media workloads often contain extraneous traffic such as ad
and flag media clips, which do not reflect the real user access
pattern and may significantly affect the object reference rank
distribution. Without removing extraneous traffic, the left of
Figure 4 shows that the log-log plot of the reference rank dis-
tribution of media objects in workload ST-CLT-04 can be well
fitted with a straight line, indicating a Zipf-like distribution
(see Equation 14 of Section 5.1.1) with a skewness factor α ≈
0.71. Similarly, Chesire et al. [15] also find that the reference
rank distribution of a streaming media workload collected in
University of Washington follows a Zipf-like distribution 3.

However, as shown in Figure 1(c), after removing the extra-
neous traffic (31% requests in the workload), the distribution
can be well fitted with a stretched exponential model, while
the log-log plot has a clear curvature with a fat head and a
thin tail. Since we use a similar method to collect streaming
media traffic as that used in study [15], it is possible that the
workload used in [15] also contained some extraneous media
traffic, which causes the observed Zipf-like distribution.

Even with extraneous media traffic, it does not seem to be
true that a Zipf-like distribution can always be observed on
the access pattern of media objects: we find the extraneous
traffic in different workloads varies. As shown in the right

3See Figure 8 of paper [15]. The skewness factor (the mi-
nus of the slope of log-log plot) estimated from the figure is
about 0.67 (instead of 0.47 as reported), quite close to that of
workload ST-CLT-04 (0.71).
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Figure 3: Reference rank distributions of media objects in P2P systems
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Figure 4: Zipf-like fit for workload with extraneous
traffic (Left: ST-CLT-04, Right: ST-CLT-05)
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Figure 5: Number of requests to each object by the
same user (Left: ST-CLT-04, Right: ST-CLT-05)

of Figure 4, the raw data in the ST-CLT-05 workload (with
ad and other extraneous media traffic) does not fit the Zipf-
like distribution well. Analyzing the traces we collected, we
find the reason is due to the changes of ad and flag media
clips in the workloads. In workload ST-CLT-05, we find the
percentage of extraneous media traffic from one of the major
advertisement media providers, yahoo.com, was significantly
reduced compared with ST-CLT-04, and the total number of
ads requests only accounts for 13% (still non-trivial) of all me-
dia requests in workload ST-CLT-05. Furthermore, in work-
load ST-CLT-05, we find several large media providers, such
as MSNBC, merged their flag and logo clips into media con-
tent objects when the objects were authored, thus the number
of requests of flag clips was also significantly reduced.

3.2.2 Caching effect
Previous studies on Web workloads have also shown that

the initial part of the reference rank distribution of objects can
be lower than what the Zipf model predicts, which looks sim-
ilar to our SE observation on media workloads. Williamson
et al. [31] point out this is due to the caching effect: popu-
lar Web objects are likely to be cached by Web browsers or
proxies, hence, subsequent requests may not reach the server.
For Web traffic, usually caching only affects the initial part of
the reference rank distribution (depending on the cache size),
and the main body of the distribution curve is still a straight
line in log-log scale. Similarly, as reported by Cherkasova et
al. [14], for short term media workloads, the object refer-
ence rank distribution in log-log scale does not significantly
deviate from a straight line except the initial part. Thus, it
is important to figure out whether the stretched exponential
distribution of media access patterns we observed is due to
the caching effect of media content.

However, for streaming workloads in this study, the caching
effect has been considered. Although a media player can cache
media files that have been delivered and played, it still sends
a report to the server when the object is re-played in the
local cache, in order to let the server generate a log entry
[8]. Similarly, both Windows and RealNetworks media prox-

ies also send a report to the server when the cached content is
requested, so that the server can collect its object access infor-
mation and generate a log entry for the request [7, 5]. Thus,
server log based workloads include all requests to media ob-
jects, even for cached objects. For client side workloads we
collected, we have carefully extracted the RTSP/MMS com-
mands for cache-validation and log statistics to include local
replay events. Thus, from the perspective of measurement
methodology, server side workloads HPC-98, HPLabs-99, ST-
SVR-01, CTVoD-04 and client side workloads ST-CLT-04 and
ST-CLT-05 reflect the real access patterns of media users.
Therefore, caching is not likely to be the reason that causes
the observed stretched exponential access patterns in these
workloads.

Meanwhile, caching effect is also observed among requests
during multiple weeks for workload IFILM-06. Workload
IFILM-06 records the number of clicks on the page of each
media object published on the IFILM Web site. Since the
Web page of a media object can be cached by a Web browser
or a proxy, a reloaded page may not be counted as a page
click. Thus, as shown in Figure 16(c) (see Appendix A), due
to the accumulation of caching effect over time, the initial
part (for the first 100 objects at most) of the reference rank
distribution deviates from the SE model gradually, but the
main body of distribution still follows the SE model. How-
ever, for short duration media workloads, the caching effect
is trivial. For example, both the 7-day workload of IFILM-
06 (Figure 2(c)) and the 9-day workload PS-CLT-04 (Fig-
ure 1(b), pseudo streaming via HTTP) are barely affected by
client side caching.

3.2.3 “Fetch-at-most-once” effect
Similar to the caching effect, Gummadi et al. [19] find that

P2P traffic is not Zipf-like and attribute this to the “fetch-at-
most-once”effect: since typically media objects do not change
over time, P2P users download them at most once (this effect
is equivalent to have an unlimited cache on each client). As-
suming the playback activities of P2P users follow a Zipf-like
distribution, the authors show that the object reference rank



distribution of corresponding downloading activities (work-
load KaZaa-02) is very close to the real reference rank distri-
bution of P2P workloads by simulations.

However, this model can only explain the access pattern
of P2P workloads and needs a free parameter to specify the
number of users. For streaming media workloads, as we
have presented in Section 3.2.2, the local replaying events
due to caching are recorded in server logs and have been
carefully measured in our client side network measurements.
(1) For streaming media workloads of small objects, such as
ST-SVR-01, ST-CLT-04, and ST-CLT-05, there is no “fetch-
at-most-once” effect, because caching has been considered.
These workloads do not follow the Zipf-like distribution, but
stretched exponential. Furthermore, as shown in Figure 5,
for the MMS traces in workloads ST-CLT-04 and ST-CLT-05
(extraneous traffic excluded), it is not rare that an object is re-
quested by the same user multiple times (multiple computers
shielded by NAT are identified with the technique in [23]). (2)
Similarly, for server log based streaming media workloads of
large video files, such as CTVoD-04, the “fetch-at-most-once”
effect does not exist either. However, the access pattern of
workload CTVoD-04 deviates from the Zipf model even more
significantly than those small file workloads. Although“fetch-
at-most-once” might be the case in P2P workloads, for large
video objects, such as files in KaZaa-02, it is also reasonable
to assume users will not repeatedly watch the same video,
whether it is rented from a store or downloaded through P2P
networks. Thus, it is very likely that user access patterns in
P2P workloads of large video files reflect the real user playing
activities quite well. This is also evidenced by the similar ac-
cess patterns found in P2P downloading workload KaZaa-02
and VoD streaming workload CTVoD-04: both the median
file sizes and stretch factors of these two workloads are very
close. We will further analyze these two workloads and this
similarity in Section 4.1.

3.3 Other media access pattern models
To our best knowledge, for most reported Zipf-like media

access patterns in existing literature, the model fitting is quite
rough. For example, in studies [18], [22], and [24], the distri-
bution curve does not strictly follow a straight line in log-log
scale. In study [32], although the head and waist of the distri-
bution curve in log-log scale are roughly in a straight line, the
tail of the distribution curve, which accounts for the majority
of media objects, is far from the straight line. Our stretched
exponential model can well fit or explain these workloads.

Besides these studies, a number of models have been pro-
posed to describe or explain the deviation of media access pat-
terns from the Zipf-like distribution. Most of them are still
based on the Zipf model. For example, Cha et al. [13] use the
Zipf with an exponential cutoff effect to describe the thin tail
of media popularity distributions. In the paper, this effect
is explained as preferential attachment with information fil-
tering. The basic idea of preferential attachment mechanism
is the “rich-get-richer” effect: If k users have fetched an ob-
ject, the rate of other users fetching it is proportional to k.
This model implies that a popular object can keep popular
continuously, rather than become unpopular over time. For
Web workloads, this argument is true: some pages, especially
the first pages of Web portals and search engines, such as
Yahoo!, Google, and MSN, can have a high popularity rank
for a very long time. For example, according to Alexa Inter-
net (http://www.alexa.com), the daily traffic rank of Yahoo!
keeps number one from 2001 (earlier data are unavailable)
until April, 2008.

Nevertheless, this argument is not valid for media objects.
Web pages can be updated frequently to attract users and
keep their popularity. In contrast, media objects are usually
immutable. In a long term, a video object, no matter how

popular it is, is unlikely to keep popular or become more pop-
ular with the passage of time and with the creation of new
objects. On the contrary, many measurement studies have
observed that the popularity of a media object becomes un-
popular quickly [13, 19, 21]. For example, study [21] reports
media popularity decreases with time exponentially. Thus,
the “rich-get-richer” phenomenon reflected in Zipf and power
law based models is not present in media objects.

We have compared the top 1, top 2, ..., top 100 popular
objects of every week in a Web workload (collected by Uni-
versity of Calgary [10]) and a video workload (IFILM-06) for
sixteen weeks. Figure 6 shows the total number of distinct
objects in the union set of these sixteen weekly top N objects
(1 ≤ N ≤ 100), for the Web and video workloads, respectively.
We can see that the set of 16 weekly top N popular Web ob-
jects is much smaller than that of 16 weekly top N popular
video objects. Particularly, the top one popular Web object
never changes, but the top one popular video object changes
every week. This indicates the number of references to a pop-
ular media object cannot be linearly accumulated with time.
The absence of “rich-get-richer” effect can also be reflected
by the evolution of media object popularity distributions in
a long duration, which has been reported by study [14]. In
Section 4, we will show that although in a short duration, the
popularity distribution of media objects in a system might be
skewed and look Zipf-like in log-log scale, the skewness tends
to weaken rather than strengthen over time, so that finally
the distribution looks unlike Zipf at all.

We have also compared the stretched exponential model
with other two-parameter media access pattern models, such
as Zipf-Mandelbrot model [26] and parabolic fractal model
[16]. We find these models can only fit a small number of
workloads, while SE fits all (see Appendix C of [20]).

4. THE DYNAMICS OF MEDIA REFER-
ENCE RANK DISTRIBUTIONS

In this section, we analyze the reference rank distributions
of media objects of different sizes in different durations, in or-
der to further understand the stretched exponential access
patterns in different media systems. Our analysis shows:
(1) parameter c well characterizes the effect of media file
sizes; (2) parameter a well characterizes the non-stationarity
effect of media access aging; (3) the deviation of media refer-
ence rank distribution from the Zipf model increases with the
length of workload duration.

4.1 Access patterns of different sized media
files

Figure 7 shows the stretch factor c of each on-demand me-
dia workload (Web, VoD, or P2P) with its median file size
(also see Table 1). In this figure, each point represents a sin-
gle workload. Roughly distributed along a straight line, these
points can be classified into three groups: for workloads with
a median file size < 5 MB, the stretch factor is ≤ 0.2; for work-
loads with a median file size > 100 MB, the stretch factor is ≥
0.3; for other workloads, the stretch factor is between 0.2 and
0.3. As shown in Table 1 (column 3, 9, and 10), in general, for
media workloads delivered by similar systems and techniques,
their stretch factors increase with their median file sizes. For
example, the median file size of workload KaZaa-03 is 5 MB,
and the median file size of workload KaZaa-02 is 300 MB.
Their stretch factors are 0.14 and 0.45, respectively. For me-
dia workloads delivered by streaming techniques, the median
file sizes of workloads IFILM-06, ST-CLT-05, HPLabs-99, and
CTVoD-04 are 2.25 MB, 4.5 MB, 120 MB, and 300 MB, re-
spectively, while their stretch factors in the SE model are 0.15,
0.2, 0.3, and 0.4, respectively.

Meanwhile, for workloads with similar median file sizes, in
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most cases, the corresponding stretch factors are also similar
regardless of the underlying media systems and delivery tech-
niques. For example, workload KaZaa-02 is delivered by P2P
networks while CTVoD-04 is delivered by VoD servers. How-
ever, they have similar median file sizes (both about 300 MB)
and similar stretch factors (0.45 and 0.4, respectively). Work-
load KaZaa-03 is delivered by P2P networks while IFILM-06
is delivered by a CDN. Their median file sizes are both less
than 5 MB, and their stretch factors are 0.14 and 0.15, re-
spectively. Workload PS-CLT-04 is delivered by downloading
while ST-CLT-04 is delivered by streaming. Both of their
median file sizes are about 2 MB, and both of their stretch
factors are 0.2. These cases indicate that in general, despite
the different techniques and systems used for media delivery,
the larger the median file size of a workload, the greater the
stretch factor of its SE reference rank distribution.

Our analysis indicates that the reference rank distribution
of a media workload highly depends on the median file size
of the workload rather than on the delivery method and the
underlying media system. Although the relationship between
the median file size and the stretch factor of a media workload
shown in Figure 7 has not been strictly formalized, the follow-
ing factors may help us further understand the trend reflected
in this figure. (1) It is unfair to compare files with similar sizes
(in bytes) but with different encoding rates and compression
ratios. The file length (in seconds) or user playback duration
might be a more objective metric, but unfortunately we can-
not use this metric because the relevant data are unavailable
in some workloads. (2) Video and audio may have different
access patterns and thus have different stretch factors. In our
workloads, KaZaa-03 is MP3 music dominant, all Web me-
dia workloads have a combination of video and audio, and
other workloads are video dominant. Due to the lack of re-
lated information in the workloads, we cannot separate video
and audio in the analysis. (3) Different types of video con-
tent (e.g., entertainment, business, and educational content)
may have different access patterns. In our study, HPLabs-99
is a business workload, where the content is hosted by an in-
ternal media server open for research employees in HP Labs
only. Workload mMoD-98 is collected in an educational envi-
ronment, where the content is a combination of video classes
and movies. Other workloads are all entertainment content
dominant. HPLabs-99 and mMoD-98 have similar median file
sizes but the values of parameter c are 0.3 and 0.55, respec-
tively. As shown in Figure 7 (“EDU” for mMoD-98 and “BIZ”
for HPLabs-99), both workloads deviate from the straight line
greater than other workloads.

4.2 Non-stationarity of media reference rank
distributions

Studies have found that the access patterns in long term
media workloads are not Zipf-like though they look Zipf-like
in short term media workloads [14, 28]. In contrast, the access
patterns in long term Web workloads are still Zipf-like even for
workloads of several months to one year [30]. In this section,

we study the stationarity of media reference rank distribu-
tions, and show how media access aging affects parameter a,
the minus of the slope of SE plot.

To characterize the dynamics of a media system, we con-
sider the birth rate of new objects (denoted as λobj) and the
request rate of all objects (denoted as λreq) first. We have an-
alyzed media accesses over time for long duration workloads
ST-SVR-01, BT-03, and IFILM-06 as well as short duration
workloads PS-CLT-04, ST-CLT-04, and ST-CLT-05 (other
workloads have no timestamps or temporal information of re-
quests). In this section we focus on long duration workloads
in order to study the trend of media access evolution. For
workloads BT-03 and IFILM-06, we find that the cumulative
number of requests increases with time linearly in a coarse
time granularity, indicating that the media request rates in
corresponding systems are roughly constants. For workload
ST-SVR-01, as shown in the curve of right y axis of Figure 8,
the media request rate is almost a constant in the first three
months, and then suddenly increases at the beginning of the
fourth month due to a system upgrade, but still approximates
to a constant.

The curve on the left y axis of Figure 8 shows the cumu-
lative number of objects requested over time for workload
ST-SVR-01. The figure shows that the number of objects re-
quested in the workload increases quickly at the beginning,
then the increase slows down and converges to a linear func-
tion asymptotically. This effect can be explained as follows.
The initial non-linear increase of the cumulative number of
requested objects is due to objects that were created and had
been requested before the trace collection. However, the num-
ber of requests to these pre-existing objects decreases quickly
with time, and the cumulative number of requested objects
will be dominated by the objects born after trace collection
after a certain duration of time. Thus, the linear part of the
curve corresponds to the birth of new objects requested in this
workload, indicating that the object birth rate is a constant
in a coarse time granularity. We have similar observations on
workloads BT-03 and IFILM-06.

The constant media request rates and object birth rates
observed in these workloads indicate that these media systems
evolve homogeneously over time during the trace collection
period. We have analyzed the reference rank distributions of
media objects accessed in different weeks and different number
of weeks in these three workloads. All of them can be well
fitted with the stretched exponential distribution (with R2 >
0.95 for most durations and R2 > 0.93 for all durations, also
accepted by χ2 tests). Furthermore, in each workload, we
find that parameter c is a constant for different weeks and
different number of weeks of that workload. According to
its correlation with the median file size in the workload as
presented in Section 4.1, the time-invariant property of stretch
factor c indicates that the median file size of a workload is a
constant along time, which is also confirmed by our validation.

Figure 9 shows the reference rank distributions of BT-03 in
different number of weeks. We can see that the minus of the



slope of the fitted line, i.e., the parameter a of the correspond-
ing SE distribution, increases with time gradually. Figure 10
further shows the evolution of parameter a over time in these
three workloads. This evolution corresponds to the observa-
tion in the study of Cherkasova et al. (with workloads HPC-
98 and HPLabs-99) [14]: for monthly workloads, the access
pattern looks like a Zipf-like distribution, while for workloads
longer than 6 months, it does not. Actually, even for monthly
workloads, the Zipf-like fitting of reference rank distribution
is quite rough, as shown in the figures of [14]. In contrast,
the media reference ranks of a workload in different durations
can be well fitted with SE distributions with the same stretch
factor c and a different parameter a.

Now let us consider a homogeneously evolving media sys-
tem with a constant media request rate λreq and a constant
object birth rate λobj . In a coarse time granularity, this is a
reasonable assumption for many systems, such as the three
workloads discussed above. According to Equation 5, 〈yse〉
increases with time since c is a constant and a increases with
time (denoted as a(t) in the follows).

The cumulative number of requested objects N(t) in the
time duration [0, t) is

N(t) = λobjt + N ′(t), (6)

where λobjt is the number of requested objects born in time
[0, t). N ′(t) is the number of “old” objects that are born be-
fore t = 0 and requested in time [0, t). Denote the cumula-
tive number of requests to object i in the workload as yi(t)
(1 ≤ i ≤ N(t)). Denoting the mean value of the cumulative
requests to objects in time [0, t) as 〈y(t)〉, we have

〈y(t)〉 =
λreqt

N(t)
=

λreq

λobj

1

1 + N′(t)
λobj t

. (7)

Intuitively, lim
t→∞

N′(t)
λobj t

= 0, since the number of old objects

will be requested less frequently with the passage of time. As-
suming the popularity of a media object decreases exponen-
tially with time [21], we have N ′(t) = O(log t) (see Appendix
D of [20] for a brief proof).

Apply Equation 4 on 〈y(t)〉 in Equation 7, we have

a(t) =

»

〈y(t)〉

Γ(1 + 1
c
)

–c

=

»

1

Γ(1 + 1
c
)
`

1 + N′(t)
λobj t

´

λreq

λobj

–c

. (8)

Thus, if λreq, λobj , and c are all constants, we have

lim
t→∞

a(t) =

»

1

Γ(1 + 1
c
)

λreq

λobj

–c

. (9)

In all workloads, the stretch factor c is less than 2. When
0 < c ≤ 2, 1

Γ(1+ 1

c
)

increases with c. Thus, for the refer-

ence rank distribution of a media workload, a increases with
stretch factor c, the ratio of media request rate to object birth

rate,
λreq

λobj
, and the duration of workload collection time t. In

Section 4.3, we will further show that the deviation of media
reference rank distribution from the Zipf model increases with
parameter c and the length of workload duration t.

As shown in Figure 10(a) and 10(b), the increase of a in
workloads BT-03 and IFILM-06 slows down with time. For
workload ST-SVR-01, as shown in 10(a), the increase of a
slows down in the first three months, then speeds up at the
beginning of the fourth month suddenly, and then slows down
again. The sudden increase of a in Figure 10(a) is caused by
the sudden increase of λreq due to a system upgrade, which
means a may not converge to a constant in practice.

For short duration workloads PS-CLT-04, ST-CLT-04, and
ST-CLT-05, we compute the distribution parameters for

workloads of different time intervals. We find both param-
eter c and parameter a are constant. The reason is as follows.
For short term workloads, the number of requested objects is
dominated by old objects. As shown in Figures 13 and 14,
throughout the workload duration, N ′(t) increases with time
almost linearly. According to Equation 8, this means the pa-
rameter a is a constant during this time. Thus, the popularity
distribution is stationary for short duration workloads.

In summary, for a media system with homogeneous evo-
lution, the media object reference rank distribution is non-
stationary, which evolves over time with an increasing pa-
rameter a and a constant, time-invariant stretch factor c.
This evolution is due to the effect of objects born before the
workload collection and/or objects pre-existing in the system,
which has significant impact on the caching performance of
media systems.

4.3 Deviation of media access patterns from
the Zipf model

In Section 3, we have shown that the distribution of me-
dia reference ranks has a fat head and a thin tail in log-log
scale, deviating from the Zipf model. In order to quantita-
tively measure this deviation, Figure 11(a) shows a general
stretched exponential distribution curve in log-log scale. In
this figure, chord AB on the SE curve corresponds to the Zipf-
like distribution (see Equation 14 of Section 5.1.1) with the
same number of objects and the same number of references
to the most popular object as those in the SE distribution.
CD is parallel to AB and tangent to the SE curve at point
(X0, Y0). If we use |OE| to represent the distance from the
original point to the chord AB and |EF | to represent the dis-
tance between AB and CD, |EF |/|OE| reflects the difference
between the SE distribution and the corresponding Zipf-like
distribution in log-log scale.

In Equation 2, let X = log i, Y = log yi, we have

Y =
1

c
log(b − aX), (10)

where 0 ≤ X ≤ log N , 0 ≤ Y ≤ 1
c

log b.

Since the slope of chord AB is k = − Ymax

Xmax
= − log b

c log N
,

chord AB can be expressed as

Y = kX + Ymax. (11)

Similarly, tangent CD can be expressed as

Y = kX + Y0 − kX0, (12)

where X0 = 1
a
(b + a

ck
), Y0 = 1

c
log(− a

ck
). Thus,

|EF |
|OE|

= |AC|
|OA|

= Y0−kX0−Ymax

Ymax
= Y0−kX0

Ymax
− 1

= log(a log N)−log log(1+a log N)−1
log(1+a log N)

+ 1
a log N

,
(13)

for which we have |EF |
|OE|

→ 1 when a log N → ∞. Thus, in

log-log scale, the difference between the media reference rank
distribution and the Zipf model increases with a log N . Figure

11(b) shows |EF |
|OE|

with different values of a and N .

For a homogeneously evolving media system, a evolves
along time until it approaches to a constant (Equations 8 and
9), and N increases with time linearly (Equation 6). Thus, in
log-log scale, the deviation of media reference rank distribu-
tion from the Zipf model increases with time, causing the “fat
head” and the “thin tail” of the distribution curve.

We have compared this deviation for different periods of
long duration workloads. For example, for the first week of
workload ST-SVR-01, where a = 0.423 and N = 459, we have
|EF |
|OE|

= 0.16. In contrast, for the entire 4 months of workload

ST-SVR-01, where a = 0.738 and N = 2260, we have |EF |
|OE|

=
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0.23. This evolution is consistent with the observation in the
study of Cherkasova et al. [14] (with workloads HPC-98 and
HPLabs-99), as we have presented in Section 4.2.

Since term a(t) (Equation 8) and term log N(t) increase
with time t slowly, it may take a long time to observe a sig-
nificant deviation between the media popularity distribution
and the Zipf model in log-log plot, especially for workloads
with small media files, such as Web media workloads in Fig-
ure 1 4. However, this does not mean that the Zipf model is
a good approximation of media access patterns for workloads
with short durations. Since log scale compresses data distri-
butions significantly, a small difference in the Zipf model may
correspond to a significantly larger difference in the SE model.
As shown in Figures 1(b) (PS-CLT-04), 1(c) (ST-CLT-04),
and 1(d) (ST-CLT-05), the deviations of these short duration
workloads (9–11 days) are still non-trivial, though not signif-
icant. For the evaluation of system related metrics, such as
hit ratios of media caching, using Zipf model may cause sig-
nificant errors. We will further study this issue in Section 5.1.

Even for short duration workloads, the deviation can still
be significant. According to Equation 8, parameter a depends

on the stretch factor c, ratio of
λreq

λobj
, and workload duration

time t. For workloads with large files, usually both the stretch

factor c and the ratio of
λreq

λobj
are large. We have presented

the correlation between stretch factor c and file sizes in Sec-
tion 4.1. The latter is large because large media files, such as
movies, tend to have a high request rate and a low produc-
tion rate. For example, as shown in Figure 10, the parameter
a of one-week workload of BT-03 (median file size 636 MB,

c = 0.52,
λreq

λobj
= 141.1) is even much larger than that of the

entire duration (4 months) of workload ST-SVR-01 (median

file size 15 MB, c = 0.2,
λreq

λobj
= 99.6), and the difference be-

tween its reference rank distribution and the corresponding
Zipf-like distribution is significant. For workloads with large
files and long durations, the deviation is more significant. As
shown in Figures 2(a), 2(b), 3(a), and 3(c), the log-log plots
of media reference rank distributions of workloads mMoD-98
(median file size 125 MB), CTVoD-04 (median file size 300
MB), KaZaa-02 (median file size 300 MB), and BT-03 (me-
dian file size 636 MB), deviate from a straight line remarkably.

5. IMPLICATIONS OF STRETCHED EXPO-
NENTIAL ACCESS PATTERNS

The Zipf-like reference rank distribution of Web objects and
the widely deployed Web proxies have demonstrated the sig-
nificance of access patterns on the performance of content de-

4Similarly, the YouTube video access pattern in study [17] is
also close to Zipf. Please see Section 3.5.4 of [20] for a detailed
explanation.

livery systems [12]. In this section, we explore the implication
of stretched exponential access patterns on media caching,
from the aspect of the asymptotic properties of workload size
and cache size.

5.1 Caching implications of different reference
rank models

As we have shown in Section 4.2, the media reference rank
distribution is stationary for short duration workloads. If we
assume requests in a media workload are independent with
each other, the temporal locality in the workload can be an-
alyzed with the reference rank model of objects.

5.1.1 Caching with the Zipf model
A Zipf-like reference rank distribution can be described as

yi =
A

iα
, (14)

where yi is the number of references to the i-th popular object
(1 ≤ i ≤ N , N is the total number of objects in the workload),
α (the skewness factor) is a constant that characterizes the
shape of the distribution, and A is a normalization factor.
Thus we have

log yi = log A − α log i, (15)

which means the distribution function is a straight line in log-
log scale. Assuming yN = 1 when N is large enough (the N-th
object gets only one access), we have A = Nα.

When α < 1 and N → ∞, the mean value of a Zipf-like
distribution is

lim
N→∞

〈yzf 〉 = lim
N→∞

1
N

PN

i=1 yi = lim
N→∞

Nα−1 PN

i=1 i−α = 1
1−α

.

(16)
Assume each object occupies one unit of storage volume and

the cache size is ηN , where η ≤ 1 and is a constant. With an
optimal cache replacement, when α < 1, the number of total
cache hits is

ηN
X

i=1

(yi − 1) ≈

Z ηN

1

(
N

x
)αdx − ηN ≈ (

η1−α

1 − α
− η)N. (17)

Thus, the optimal hit ratio of a workload with Zipf-like
distribution is 5

Hopt
zf (η) = lim

N→∞

1

N〈yzf 〉
(
η1−α

1 − α
−η)N = η1−α−η(1−α). (18)

According to the above derivation, we can estimate the op-
timal hit ratio. For example, when α = 0.8, caching 25% of
the data can achieve a hit ratio of 0.7. This is consistent with
the Web caching hit ratios reported in [12].

5When α ≥ 1, we have Hopt
zf (η) = 1.
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5.1.2 Caching with the stretched exponential model
Assume each object occupies one unit of storage volume

and the cache size is k (k = ηN , η ≤ 1 and is a constant).
The optimal hit ratio of SE distribution is

Hopt
se (η) = lim

N→∞

hits
N〈yse〉

= lim
N→∞

1
N〈yse〉

Pk

i=1(yi − 1)

= lim
N→∞

[ 1
〈yse〉

R
k
N
1

N

(1 − a log x)
1

c dx − k
N〈yse〉

]

=
Γ(1+ 1

c
)−γ(1+ 1

c
, 1

a
−log η)

Γ(1+ 1

c
)−γ(1+ 1

c
, 1

a
)

− η

〈yse〉
.

(19)
Figure 12 shows an exemplified comparison of optimal hit

ratios between the Zipf-like and the stretched exponential
models when η changes. The parameters are selected based
on typical client side Web workloads (α = 0.8) and media
workloads (c = 0.2, a = 0.25, same as those in ST-CLT-05).
Both distributions have the same hit ratio with an unlim-
ited size of cache 6. The duration of workload ST-CLT-05
is 11 days, comparable to those of client side Web workloads
in Web caching studies such as Breslau et al. [12]. Thus,
this comparison is fair. From Figure 12, it is clear that the
caching efficiency of workloads under the SE model is much
worse than that under the Zipf model: caching 1% Web con-
tent can achieve about 40% hit ratio, while caching 1% media
content can only achieve 18% hit ratio.

In order to compare the asymptotic caching performance of
these two models with a small η, we consider the case where
the cache size k is a constant and k << N .

For a Zipf-like distribution with α < 1, we have

H
opt
zf (

k

N
) =

Pk
i=1(yi − 1)
PN

i=1 yi

=

Pk
i=1(N

i
)α − k

N〈yzf 〉
≈

Pk
i=1

1
iα

〈yzf 〉

1

N1−α
.

(20)
For a stretched exponential distribution, we have

Hopt
se ( k

N
) =

Pk
i=1

(yi−1)
P

N
i=1

yi
=

Pk
i=1

(1+a log N
i

)
1

c −k

N〈yse〉

≤ k
〈yse〉

(1+a log N)
1

c

N
.

(21)

When N → ∞, we have

lim
N→∞

H
opt
se ( k

N
)

H
opt
zf

( k
N

)
= lim

N→∞

〈yzf 〉

〈yse〉

k
Pk

i=1
1

iα

(1 + a log N)
1

c

Nα
= 0. (22)

Since 〈yzf 〉 and 〈yse〉 are independent of k, this equa-
tion means the cache efficiency of a workload following the
stretched exponential model is asymptotically lower than that
of a workload following the Zipf model when η is small
(k << N).

6The actual hit ratio of ST-CLT-05 is only 0.6 for unlimited
caching, because many objects are accessed only once.

5.1.3 Simulation results of streaming media caching
Streaming media objects commonly have large file sizes and

are often partially accessed. We have studied the efficiency of
segment-based caching for streaming media through the ref-
erence rank distribution of media segments. We evenly divide
each media object into segments of 5-second playback length,
which is the default setting of the play-out buffer size of Win-
dows media player [4]. The same analysis is also conducted
with byte-based segmentation, which shows similar results.

Segment hit ratio reflects the actual byte hit ratio well since
each segment is very small. We have studied the optimal hit
ratio, as well as the hit ratio of different replacement algo-
rithms on the streaming media workloads we collected. We
find that the optimal segment hit ratio of streaming media is
much lower than the corresponding optimal object hit ratio.
For example, for workload ST-CLT-05, the maximal segment
hit ratio (unlimited cache) is only 0.342, although the object
hit ratio can be up to 0.6. Furthermore, the segment hit ratios
of LRU and LFU replacement algorithms are much lower than
the optimal segment hit ratio. For example, for workload ST-
CLT-05, when the normalized cache size is 0.2, the optimal
segment hit ratio is 0.342 while the LRU segment hit ratio is
only 0.281. LFU achieves even worse performance, because it
cannot capture the sequential access order of segments in an
object as LRU. For more data and detailed analysis, please
refer to Section 3.6.2 of [20].

5.1.4 Summary
The analysis above indicates that media caching under the

stretched exponential model is far less effective than Web
caching under the Zipf model, especially when only a small
portion of accessed objects can be cached. Thus, in many pre-
vious studies advocating media caching where the Zipf model
is assumed, it is highly likely that the benefit of media caching
has been overestimated.

5.2 The evolution of media caching perfor-
mance

As presented in Section 4.2, in a homogeneously evolving
media system, due to the diminishing accesses to old objects,
the average number of requests per object in a media workload
gradually increases with time until approaching to a constant.
With a higher a and a constant c over time, the request con-
centration of media requests increases, and the performance
of media caching can be improved. Now we study how long
it takes and how much storage is required for a significant
performance improvement.

We have extracted the Last-Modified field in the
RTSP/HTTP headers of media requests in workloads PS-
CLT-04, ST-CLT-04, and ST-CLT-05. We use this field to
approximate the birth time of a requested object. Figures 13
and 14 show the cumulative number of objects requested over
time in ST-CLT-04 and ST-CLT-05, respectively. We plot ob-



jects born before workload collection (old objects) and object
born after workload collection (new objects) separately. In
all three workloads, most objects requested in the workload
are old objects pre-existing before workload collection, and
the numbers of old and new objects both increase with time
linearly. Figure 15 shows the CDF of the ages of old objects
when they were requested for the first time in the three work-
loads. We can see that more than 70% of old objects are at
most 500 days old. This figure indicates that the number of
old objects will not linearly increase with time forever, and
new objects will catch up with and overwhelm old objects
after a long time.

Assume all objects are cacheable and have the same file
size. According to Equation 7, when new objects dominate
the workload, the average number of requests to an object in
workloads PS-CLT-04, ST-CLT-04, and ST-CLT-05 will be
39.7, 30.3, and 40.5, respectively, and the hit ratio for caching
10% objects will be 0.85, 0.84, 0.85, respectively. In contrast,
in these workloads, the optimal hit ratios for caching 10%
objects are only 0.52, 0.48, and 0.54, respectively.

However, this process may take a very long time. Even as-
suming the number of old objects will not increase after the
workload collection (an overoptimistic assumption according
the trends shown in Figures 13 and 14), the time for new ob-
jects to dominate the workload is 25.3, 54.4, and 103.3 days for
PS-CLT-04, ST-CLT-04, and ST-CLT-05, respectively. For
server side workloads such as ST-SVR-01 (Figure 8), this time
can be shorter, because the number of objects in a server is
limited. However, the duration of this time is still in weeks.

Considering that the popularity of a media object decreases
with time, the request correlation, another source of tempo-
ral locality of media systems, could be exploited to further
improve the caching performance. However, this process also
takes time, since media objects have long life spans. For a
short duration, it is hard to exploit correlation among re-
quests.

Thus, for client side media caching, a huge storage space is
required and the performance can hardly be improved without a
long execution time. A distributed caching system with enor-
mously large storage and huge amount of pre-existing content,
such as a P2P-based streaming content delivery system, can be
very effective. In a P2P system, the total amount of storage
is scalable to the user population and workload size. Further-
more, the content cached in a client’s local machine can be
contributed to the system when the client joins the system
for the first time, reducing the cold misses of new requests
and thus significantly reducing the system execution time to
achieve the optimal performance.

6. CONCLUSION
In this paper, we have analyzed a wide variety of media

workloads collected from both the client side and the server
side in different media systems with different delivery ap-
proaches, and proposed a general model for Internet media
access patterns. We have found that the reference ranks of
media objects in these workloads follow the stretched expo-
nential distribution, whose shape is determined by the media
file sizes and the aging effect of media accesses in the work-
load. Modeling the performance of media caching, we found
that the performance of media caching under the stretched
exponential distribution is far less efficient than Web caching
under the Zipf-like distribution, indicating previous studies
based on the Zipf assumption have potentially overestimated
the benefit of media caching. An efficient media delivery sys-
tem thus needs to leverage distributed resource sharing to
scale its storage space with the increase of its workload size
along time. Our study indicates that a client-server based
caching system, such as a Web proxy, would not be able to
effectively deliver media contents in a scalable manner, and

provides an analytical basis for applying a P2P model to build
large scale Internet media delivery systems.
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APPENDIX

A. MORE REFERENCE RANK DISTRIBU-
TIONS OF MEDIA WORKLOADS

Figure 16(a) and 16(b) show the reference rank distribu-
tion of media objects in workloads HPC-98 and HPLabs-99,
respectively. Figure 16(c) shows the reference rank distribu-
tions of workload IFILM-06 within different durations. Sim-
ilar to Figure 9, the minus of the slope of the distribution
curve increases with time. The head of the reference rank
distribution (raw data) deviates from the SE model gradu-
ally due to the accumulation of caching effect, as presented in
Section 3.2.2. Furthermore, the tail of the distribution (raw
data) is “cut off” from the SE model with time gradually.
This is because for a server side media workload, the media
requests are constrained by the number of objects introduced
in the system. If the object birth rate is small, even the least
popular object can still get a certain amount of accesses, and
thus Equation 3 should be changed to b = yN +a log N where
yN > 1. However, this does not affect the analysis in the
paper since b is only a normalization parameter.

Figure 16(d), 16(e) and 16(f) show the reference rank dis-
tributions in media workloads of the “other” category. As
shown in Figure 16(d), the stretch factor of live streaming
media workload Akamai-03 is 0.2, very close to that of most
on-demand Web media workloads. Figure 16(e) and 16(f)
show the reference rank distribution of media objects in work-
load Movie-02 (movie box office sales) and IMDB-06 (top 250
movie votes), respectively. The parameter a of these two
workloads are much higher than other workloads, since they
have small media birth rate and large media request rate.


