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Abstract

Reliable multicast delivery requires that a multicast
message be received by all members in a group. Hence
certain or all members need to buffer messages for
possible retransmissions. Designing an efficient buffer
management algorithm is challenging in large multicast
groups where no member has complete group member-
ship information and the delivery latency to different
members could differ by orders of magnitude.

We propose an innovative two-phase buffering algo-
rithm, which explicitly addresses variations in delivery
latency seen in large multicast groups. The algorithm
effectively reduces buffer requirements by adaptively al-
locating buffer space to messages most needed in the
system and by spreading the load of buffering among
all members in the group. Simulation and experimental
results demonstrate that the algorithm has good perfor-
mance.

Keywords: reliable multicast, buffer management, error re-
covery, randomization, scalability

1 Introduction

Multicast is an efficient way for disseminating data
to a large group. Many emerging multicast applications
require reliability guarantees not provided by the IP mul-
ticast protocol [4]. Providing reliable multicast service
on a large scale requires an efficient error recovery algo-
rithm. It has been shown that putting the responsibility
of error recovery entirely on the sender can lead to a
message implosion problem [7, 13]. Consequently, sev-
eral reliable multicast protocols adopt a distributed error
recovery approach which allows certain or all members
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to retransmit packets lost by other members. For exam-
ple, in the SRM protocol [7], the Bimodal Multicast pro-
tocol [2], and the Randomized Reliable Multicast Proto-
col [16], retransmissions are performed by all members
in the group. In tree-based protocols like RMTP [13],
LBRRM [9], and TMTP [17], members are grouped into
local regions based on geographic proximity and a repair
server is selected in each region to perform retransmis-
sions.

If a member wants to perform retransmissions for
other members, it needs to buffer received messages
for some period of time. Determining which receivers
should buffer a message and for how long turns out to be
a difficult problem. A conservative approach is to have
every member buffer a message until it has been received
by all current members in the group. However, this is in-
efficient in a heterogeneous network where the delivery
latency to different members could differ by orders of
magnitude. Moreover, some reliable multicast protocols
adopt the IP multicast group delivery model in which re-
ceivers can join or leave a multicast session without no-
tifying other receivers. Consequently, no single receiver
has complete membership information about the group.

Buffer management algorithms in existing reliable
multicast protocols reflect widely different strategies for
deciding which members should buffer messages and
how long a message should be buffered. In some tree-
based protocols, a repair server buffers all data packets
it has received in the current multicast session. For ex-
ample, the RMTP protocol was originally designed for
multicast file transfer. In this protocol, a repair server
buffers the entire file in a secondary storage. This ap-
proach is feasible only if the size of data transmitted in
the current session has a reasonable limit. For long-lived
sessions or settings where repair servers lack space, the
amount of buffering could become impractically large.

The SRM protocol does not buffer packets at the
transport level. Rather, the application regenerates pack-
ets if necessary based on the concept of Application
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Level Framing (ALF) [3]. This requires that the applica-
tion be designed according to the ALF principle and is
capable of reconstructing packets. Even so, buffer man-
agement at the application level remains a challenge.

Some reliable multicast protocols use a stability de-
tection algorithm to detect when a message has been re-
ceived by all members in the group and hence can be
safely discarded [8]. This requires members in the group
to exchange message history information periodically
about the set of messages they have received. In addi-
tion, a failure detection algorithm is needed to provide
current group membership information.

Previously we proposed a message buffering algo-
rithm for reliable multicast protocols that reduces the
amount of buffer requirement by buffering messages on
only a small set of members [12]. More specifically,
we assume that each member has an approximation of
the entire membership in the form of network addresses.
The approximation needs not be accurate, but it should
be of good enough quality that the probability of the
group being logically partitioned into disconnected sub-
groups is negligible. Upon receiving a message, a mem-
ber determines whether it should buffer the message us-
ing a hash function based on its network address and
the identifier of the message. (A commonly used iden-
tifier is [source address, sequence number].) If a mem-
ber missed a message, it uses the same hash function to
identify the set of members which should have buffered
the message and requests a retransmission from one of
them.

This algorithm makes no use of network topology
information. Consequently, it suffers from a tendency
to do error recovery over potentially high latency links
in the network. The probability of this happening and
the associated penalty in latency both increase with the
size of the group. Hence the protocol will have a scal-
ability problem in very large networks. It is desirable
to have an algorithm that selects receivers to buffer a
message based on geographic locations of different re-
ceivers. Unfortunately, our previous algorithm cannot
be easily modified to incorporate such information. The
work described here was motivated by this observation.

In this paper, we report our work on optimizing buffer
requirements for a randomized reliable multicast pro-
tocol called RRMP. The error recovery algorithm in
RRMP combines our previous work on randomized er-
ror recovery in Bimodal Multicast [2] and hierarchical
error recovery similar to that employed by tree-based
protocols. Its buffer management extends our previ-
ous work on buffer optimization by proposing an inno-
vative two-phase buffering algorithm that explicitly ad-
dresses the variances in delivery latency for large multi-
cast groups. The algorithm reduces buffer requirements
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by adaptively allocating buffer space to messages most
needed in the system and by spreading the load of buffer-
ing among all members in the group. Unlike stability
detection protocols, the algorithm does not require peri-
odic exchange of messages and has low traffic overhead.

The rest of the paper is organized as follows. In
Section 2 we briefly describe the error recovery algo-
rithm in RRMP because it is closely related to the work
reported here. A complete description can be found
in [16]. Readers already familiar with the protocol can
proceed directly to Section 3, where we describe the de-
tails of our buffer management algorithm. Sections 4
and 5 evaluate its performance using simulation and ex-
periments. Limitations of the algorithm are presented in
Section 6. Section 8 concludes.

2 A Randomized Error Recovery Algo-
rithm

The RRMP protocol is designed for multicast appli-
cations with only one sender. We assume that receivers
are grouped into local regions based on their geographic
locations and that different regions are organized into a
hierarchy according to their distance from the sender.
This is called the error recovery hierarchy. Figure 1
shows an example of a hierarchy where the whole group
is divided into three local regions. We define the parent
region of a receiver as its least upstream region in the hi-
erarchy. For example, in Figure 1, region 1 is the parent
region for all receivers in region 2. If a receiver is in the
same region as the sender, then it has no parent region.

Each receiver maintains group membership knowl-
edge about other receivers in its region as well as re-
ceivers in its parent region. This is achieved by peri-
odic exchanges of session messages among all members
in a group. We adopt an idea from the scalable ses-
sion message protocol [14] in SRM which divides ses-
sion messages into two categories: local session mes-
sages and global session messages. Local session mes-
sages are multicasts restricted within a local region and
global session messages are multicasts that reach the en-
tire group. Session messages are also used to synchro-
nize state among receivers and to help a receiver detect
the loss of the last message in a burst, an idea previ-
ously used in the SRM protocol. In [16] we describe an
algorithm to construct the error recovery hierarchy and
to provide the required group membership knowledge at
each receiver.

In RRMP, the responsibility of error recovery is dis-
tributed among all members in the group. Its error re-
covery algorithm consists of two phases executed con-
currently: a local recovery phase and a remote recovery
phase. In the local recovery phase, when a receiver p de-
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Figure 1. Local regions in a hierarchical
structure

tects a message loss, it selects a receiver g uniformly at
random from all receivers in its local region and sends a
request to ¢. p also sets a timer according to its estimated
round trip time to ¢g. (Round trip time measurements are
described in [16].) Upon receiving p’s request, ¢ checks
whether it has the message. If so, it sends the message
to p. Otherwise it ignores the request. If p does not re-
ceive a copy of the message when its timer expires, it
randomly selects another receiver in its region and re-
peats the above process. As long as at least one local
receiver has the message, p is eventually able to recover
the lost message.

In the remote recovery phase, when a receiver p de-
tects a message loss, it randomly chooses a remote re-
ceiver r in its parent region and, with a small proba-
bility, sends a request to . This probability is chosen
so that the expected number of remote requests sent by
all receivers in the region is a constant A. p also sets
a timer according to its estimated round trip time to r.
This timer is set by any receiver missing a message, re-
gardless whether it actually sent out a request or not. If
p does not receive a copy of the message when its timer
expires, it randomly selects another receiver in its parent
region and repeats the above process.

Upon receiving a request from a remote receiver p,
r checks whether it has the requested message. If so, it
sends the message to p. Otherwise, r missed the mes-
sage as well. In this case, r records “member p is wait-
ing for the message”. When r later receives a copy of
the message, it relays the message to p. When p re-
ceives a repair message from a remote member, it checks
whether the message is a duplicate. If not, p multicasts
the message in its local region so that other members
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sharing the loss can receive the message.

The two phases described above, local recovery and
remote recovery, are executed concurrently when a re-
ceiver detects a message loss. If a receiver has no parent
region, its remote recovery phase does nothing.

3 Optimizing Buffer Management

As described in the previous section, the RRMP
protocol distributes the responsibility of error recovery
among all members in a group. Hence every member
needs to decide how long a message should be buffered
for possible retransmissions. The problem is that this
involves a trade-off with error recovery latency. If a
member discards a message and later receives a retrans-
mission request for that message, it will be unable to
answer the request. Due to the randomized nature of
our error recovery algorithm, this does not necessarily
compromise the correctness of the protocol because an-
other request will be sent to a randomly chosen member
upon timeout. As long as some member still buffers the
message, the loss can be recovered eventually. How-
ever, error recovery latency is increased because more
requests were needed to repair the loss. The problem is
even more complicated in a wide area network where the
latency between two regions can be significantly higher
than the latency within a region. Since a member can
receive a request either from a local member or from a
remote member, it is difficult to determine how long a
message should be buffered for potential requests.

In order to reduce buffer requirements effectively
while minimizing its impact on recovery latency, RRMP
adopts an innovative two-phase buffering scheme:
feedback-based short-term buffering and randomized
long-term buffering. When a message is first introduced
into the system, every member that receives the message
buffers it for a short period of time in order to satisfy lo-
cal retransmission requests. Later when the message has
been received by almost all members in a region, only a
small subset of members in this region continue to buffer
the message. The rest of the section describes the details
of our scheme.

3.1 Feedback-based Short-term Buffering

First we investigate how long a member should buffer
a message for local retransmission requests. Since the
outcome of the initial IP multicast for each message can
be different, it is undesirable to buffer every message
for the same amount of time. For example, if only a
small fraction of members in a region have received a
message during the initial IP multicast, these members
should buffer the message for a long period of time in
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order to satisfy local requests from other members. In
contrast, if almost all members have received the mes-
sage during the initial multicast, then the message can
be discarded quickly. Ideally, we want to allocate buffer
space to messages most needed in the system.

In RRMP, the buffering time for a message is based
on an estimation of how many members in the region
have received the message. One way to estimate this
information is to let all members periodically exchange
message history information about the set of messages
they have received, an idea previously used in some sta-
bility detection protocols [8]. Here we propose a dif-
ferent scheme in which a member estimates this infor-
mation based on the history of retransmission requests
it has received. Recall that in RRMP every member
missing a message sends local requests to randomly se-
lected members in its region. Hence the likelihood that a
member receives a request increases with the number of
members missing the message. More formally, let n be
the size of a region and p be the percentage of members
in this region missing a message. The probability that a
member will not receive any request is:

1
n—1

(1- )"

As n — oo, this probability can be approximated by
e~ P, which decreases exponentially with p. Conse-
quently, if a member has not received any request af-
ter a sufficiently long period of time, it can conclude
with high confidence that almost all members in the re-
gion have received the message. Based on this observa-
tion, we design a feedback-based scheme for short-term
buffering: when a member receives a message, it buffers
the message until no request for this message has been
received for a time interval 7'. Such a message is called
an idle message and T is called the idle threshold. The
choice of T' depends on the maximum round trip time
within a region and the confidence interval. We call this
a feedback-based scheme because a member uses the re-
transmission requests it received as feedback to estimate
how many members in the region still miss the message.
Unlike stability detection protocols, our scheme does not
introduce extra traffic into the system.

3.2 Randomized Long-term Buffering

After a message has become idle, a member may de-
cide to discard it. However, due to the randomized na-
ture of the algorithm, it is possible that a message is still
missing at some receivers but has become idle every-
where else. These unlucky receivers will not be able to
recover the loss if all other members have decided to dis-
card the message. Moreover, since inter-region latency
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can be much larger than intra-region latency, a member
may receive a remote request from a downstream mem-
ber asking for a message which has become idle at all
members in the region.

RRMP addresses this problem by providing long-
term buffering for an idle message at a small subset of
receivers in each region. The set of long-term buffer-
ers are chosen randomly from all members in a region.
More specifically, when a member detects that a mes-
sage has become idle, it makes a random choice to be-
come a long-term bufferer with probability P. P is cho-
sen so that the expected number of long-term buffer-
ers in the region is a constant C'. For a region with
n members, probability theory shows that the number
of long-term bufferers has a binomial distribution with
parameters n and P [5]. Asn — oo, P — 0 and
nP — C. Hence for large regions the distribution can
be approximated by a Poisson distribution with param-
eter C. (In [16] we applied a similar technique to an-
alyze the number of remote requests sent when an en-
tire region missed a message.) The probability that &

. . . k
members buffer an idle message is e~ <+

- Figure 2
shows how the distribution changes with different val-
ues of C'. The choice of C reflects a trade-off between
buffer requirements and recovery latency. With large C
more members buffer an idle message, and hence an un-
lucky receiver in the previous scenario will recover the
loss faster. On the other hand, small C reduces buffer re-
quirements but may lead to longer recovery latency. In
particular, it is possible that an idle message is buffered
nowhere due to randomization. The probability of this
happening decreases exponentially with C' as shown in
Figure 3. When C' = 6, for example, the probability is
only 0.25%. (This is the probability that no receiver in
a region buffers a message in its long-term buffer. It is
not the probability that a receiver will miss a message.
For example, if the receiver gets the message during the
initial multicast, it will not need any error recovery at
all.)

When the sender multicasts a stream of messages, the
load of long-term buffering is spread evenly among all
members in a region. This is in contrast to some tree-
based protocols where a repair server bears the entire
burden of buffering messages for a local region. Even-
tually even a long-term bufferer may decide to discard
an idle message if the message has not been used for
such a long time that it is highly unlikely any member
may still need it.

Receivers may join or leave a multicast session dy-
namically. When a receiver voluntarily leaves the group,
it transfers each message in its long-term buffer to a ran-
domly selected receiver in the region. This avoids the
situation where all long-term bufferers decide to leave
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Figure 2. For large regions, the number of
long-term bufferers for an idle message ap-
proximately follows a Poisson distribution
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Figure 3. For large regions, the probability
that no member buffers an idle message
decreases exponentially with C.

the group, making a message loss unrecoverable.
3.3 Search for Bufferers

When a member p receives a remote request from a
downstream member r for a message, there are three
possibilities:

e p has received the message and still buffers it.

e p has never received the message.
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e preceived the message but has discarded it.

In the first case, p can immediately send the message to
r. In the second case, p records r’s request. Later when
p receives the message, it will forward the message to r
as described in Section 2. In the third case, however, p
needs to search for a member which buffers the message.

One solution is for p to multicast r’s request in its re-
gion. If a member has the message in its buffer, it multi-
casts areply “I have the message” and then forwards the
message to r. A randomized back-off scheme is used
to suppress duplicate responses when multiple members
buffer the message: upon receiving a request, a mem-
ber waits a random amount of time before multicasting
its reply in the region. If it hears a multicast for the
same message from another member, it suppresses its
own multicast. The problem is how to choose an appro-
priate back-off period. As described earlier, the expected
number of long-term bufferers for an idle message is C.
Hence it is tempting to set the back-off period to be pro-
portional to C'. In practice, however, we have found that
this approach occasionally leads to message implosion.
Recall that in our feedback-based buffering scheme each
member independently decides when a message has be-
come idle based on retransmission requests it received
from other members. Because of randomization, it is
possible that a message has become idle and been dis-
carded at one member but is still being buffered at many
other members (i.e. the message has not become idle
at all members in the region). If a multicast request is
sent in this case, the back-off period will be too short to
suppress duplicate responses effectively.

In order to avoid storms of multicast replies, RRMP
adopts a different approach where a member conducts
a random search in its region to find out a bufferer of
the message. More specifically, when p receives r’s re-
quest, it randomly selects a member ¢ in its region and
forwards r’s request to g. p also sets a timer according to
its estimated round trip time to g. Upon receiving r’s re-
quest, g checks whether the message is still in its buffer.
If so, it sends the message to r and multicasts a reply
“I have the message” in its region. This reply notifies
other members that the search process is over. If ¢ has
discarded the message as well, it joins p in the search
process and tries to find a bufferer of the message. (If
q has never received the message, it will send retrans-
mission requests as described in Section 2.) If p does
not hear a reply when its timer expires, it randomly se-
lects another receiver in its region and repeats the above
process. As time goes by, more and more members will
join the search process. As long as at least one member
in the region still buffers the message, r will receive the
message eventually.
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Figure 4. Search for bufferers in a local re-
gion

Figure 4 illustrates the search process in a region with
four members, one of which is a bufferer. The horizon-
tal direction represents different members in the group,
and the vertical direction represents the amount of time
that has elapsed since the search starts. We assume that
the latency between any two members in the region is
oms. Suppose member p; receives a remote request at
time 0. It forwards the request to a randomly selected
member p». Since p» does not have the message either,
it forwards the request to p3. After 10ms p; times out
and sends another request to p4, which is the bufferer.
Upon receipt of the request, p4 sends the message to the
remote member and multicasts a reply in the region.

The search time for a message depends on the num-
ber of members that buffer the message. If the message
has become idle at all members in the region, the ex-
pected number of bufferers is C'. Hence increasing C'
can reduce search time at the expense of higher memory
requirements. In particular, the search process is avoided
if ’s request arrives at a bufferer of the message.

The above discussion is simplified in assuming that
p is the only member receiving a remote request. As
described in Section 2, when an entire region missed a
message, on average A members will send remote re-
quests to an upstream region. As soon as one of them
receives a remote repair, it will multicast the repair in its
region.

4 Simulation Results

In this section, we evaluate the performance of our
buffer management scheme using simulation. We focus
on the behavior of the protocol in a local region. The
round trip time between any two members in the region
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Figure 5. Effectiveness of feedback-based
buffering. The z-axis is in logarithmic
scale. The figure indicates that the amount
of buffering time decreases as the initial IP
multicast has reached more members.

is 10ms. The idle threshold T is set to 40ms (i.e., 4
times the maximum round trip time). For simplicity, we
assume that retransmission requests and repairs are not
lost.

We first evaluate the effectiveness of our feedback-
based short-term buffering scheme in a region with 100
members. We simulate the outcome of an IP multicast
by randomly selecting a subset of members to hold a
message initially. All other members simultaneously de-
tect the loss and start sending local requests. We mea-
sure how long these initial members buffer the message.
The result is shown in Figure 5 (note that the z-axis is
in logarithmic scale). As can be seen from the figure,
the amount of buffering time decreases as the initial IP
multicast has reached more members.

In Figure 6 we take a closer look at one of the data
points in Figure 5 where one member holds a message
initially. We compare the number of members which
have received the message with the number of members
which buffer the message as error recovery proceeds. As
can be seen from the figure, when only a small percent-
age of members have received the message, almost all
of them buffer the message. The number of short-term
bufferers decline rapidly when an overwhelming major-
ity of members (96% in this case) have received the
message. The results in these two figures demonstrate
that our feedback-based scheme is effective in allocat-
ing buffer space to those messages most needed in the
system.

Next we investigate the penalty in error recovery la-
tency due to a need to search for a bufferer. We assume
that a remote request arrives at a randomly chosen mem-
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Figure 7. Search time decreases as the
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ber in a region with 100 members. The simulation is
repeated 100 times with different random seeds and the
average is taken. Figure 7 shows that the search time
decreases as the number of bufferers increases. (The
search time is 0 if the request arrives at a bufferer.) With
10 bufferers, for example, the average search time is
20ms (i.e. twice the round trip time). In a wide area net-
work, the latency between two regions is usually much
higher than the latency within a region. Hence the search
time is likely to be a small fraction of the total recovery
latency.

In Figure 8 we show how the search time changes
when the size of the region increases from 100 members
to 1000 members. The number of bufferers is fixed at 10.
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The figure indicates that the degree of increase in search
time is much smaller than that in region size: when the
region size increases by a factor of 10, the correspond-
ing search time only increases by a factor of 2.2. With
1000 members, the percentage of bufferers is only 1%.
Compared with the case where every member buffers
the message, our algorithm reduces the amount of buffer
space by a factor of 100.

5 Experimental Results

In this section, we compare the amount of buffer re-
quirements in Bimodal Multicast with that in RRMP on
the UNIX platform. The experiment was conducted in
a group of 30 machines in a local area network. The
sender sends 1K byte messages at a rate of 100 mes-
sages per second. Messages are delivered to the appli-
cation in FIFO order. We randomly drop messages with
probability 1% at each receiver and compare the number
of messages a receiver keeps in its buffer between the
two protocols. The results are shown in Figure 9. The
z-axis indicates the times when the measurements were
taken and the y-axis indicates the number of buffered
messages.

Recall that a receiver in the Bimodal Multicast pro-
tocol buffers received messages for a fixed amount of
time after their initial reception and then garbage col-
lects the message [2]. In the current implementation,
the length of a gossip round is 100ms and a receiver
keeps a message for 10 rounds. The figure shows that
the number of messages in a member’s buffer is around
100. In contrast, the RRMP protocol divides its buffer
space into two parts: a short-term buffer and a long-term
buffer. When a member first receives a message, it keeps
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Figure 9. Comparison of buffer require-
ments between Bimodal Multicast and
RRMP in a group of 30 members in a lo-
cal area network.

the message in its short-term buffer until no request for
this message has been received for a certain period of
time (50ms in the current implementation). Then the
member makes a random choice to become a long-term
bufferer with probability C'/n. In this experiment, we
set C = 6 and n = 30. Hence on average 20% of the
members in a region serve as long-term bufferers. A
long-term bufferer keeps the message for 1 second. The
figure shows that the resulting buffer requirements are
substantially smaller than that for the Bimodal Multicast
protocol.

The amount of buffer space in Bimodal Multicast can
be reduced if a member buffers received messages for
a shorter period of time. In order to be comparable to
RRMP, a member should buffer a message for approxi-
mately 250ms. However, we have shown in [15] that a
noticeable fraction of message losses in Bimodal Multi-
cast may take longer than 250ms to recover due to ran-
domization. If a message loss cannot be recovered after
a certain amount of time, the protocol gives up on the
message and reports the loss to the application. Con-
sequently, the application may experience a higher loss
rate if the amount of buffering time is reduced.

One concern with the two-phase buffering scheme in
the RRMP protocol is its potential negative impact on
error recovery latency: after a message has become idle
(i.e. no request for this message has been received for
50ms), only a subset of members in a local region will
continue to buffer the message. If a member discards
a message and then later receives a retransmission re-
quest for that message, it cannot answer the request it-
self and needs to search for a bufferer of the message.
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This is usually not a problem when all members are in a
local area network, or when message losses occur ran-
domly and independently, because our previous work
has demonstrated that error recovery latency in this case
is much smaller than 50ms [15].

The situation is quite different in a wide area net-
work where all members in a region may miss the same
message. To study the behavior of the RRMP protocol
under such situations, we conduct another experiment
where we emulate a wide area network by dividing the
30 members evenly into two local regions. The sender
is in one of the regions. Messages sent within a local
region experience the normal delay of the underlying
physical network. Messages sent between the two re-
gions have an additional delay of 30ms and a random
loss probability of 5% to emulate wide area links. (No
loss is introduced on messages sent within a local re-
gion.) Because all members in the downstream region
will miss the same message, the lost message can only
be repaired through the remote recovery phase. Due to
the long latency between the two regions (the round trip
time is larger than 50ms), a member in the sender’s re-
gion may receive a remote request from a downstream
member, asking for a message that it has already dis-
carded. In this case it needs to search for a bufferer of
the message.

As a target for comparison, we implemented a single-
phase buffering scheme in which all members continue
to buffer an idle message for 1 second (i.e. every mem-
ber is a long-term bufferer). We compare the error re-
covery latency between the two schemes and show the
results in Figure 10. The x-axis is the error recovery
latency in milliseconds and the y-axis is the percentage
of message losses that are recovered within the corre-
sponding amount of time. The figure indicates that the
two-phase buffering scheme incurs only a small perfor-
mance penalty in error recovery latency while providing
a substantial reduction in buffer requirements.

6 Discussion

In RRMP, a member may discard a message before
the message has been received by all members in the
group. This is in contrast to stability detection pro-
tocols where a message is discarded only after it has
been delivered everywhere. Consequently, our buffer-
ing scheme introduces a small probability of violating
the reliability guarantee of the multicast service. Such
probability can be made arbitrarily small with carefully
chosen parameters for the protocol, but still must be ac-
counted for when designing an application.

Applications that require a stronger guarantee should
use a protocol that provides better reliability, such as vir-
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Figure 10. Comparison of error recovery
latency with two buffering schemes.

tual synchrony [1]. The probabilistic guarantees offered
by RRMP have the benefit of superior scalability and
intrinsic robustness in networks subject to message loss
and process failures, but are not appropriate when abso-
lute guarantees of reliability are needed.

7 Related Work

In the RRMP protocol, the set of long-term buffer-
ers are chosen randomly from all receivers in a region.
Previously we proposed a deterministic algorithm [12]
that chooses a subset of receivers in a group to serve as
bufferers using a hash function as described in Section 1.
It is interesting to compare these two approaches.

We believe that the choice reflects a trade-off between
network traffic and computation overhead. Under the
deterministic algorithm, a receiver can find out the set of
bufferers for a message by applying the hash function to
the network address of each member in its region. This
avoids the latency and network traffic associated with
the search process. However, it incurs certain compu-
tation overhead because the hash function needs to be
calculated each time a message is received. In [12] van
Renesse proposed the design of an efficient hash func-
tion.

One advantage of the randomized algorithm is that
it allows easy adaptation to group membership dynam-
ics: when a receiver voluntarily leaves the group, it can
transfer messages in its long-term buffer to randomly se-
lected receivers in its region. It is not clear how this can
be done with a deterministic algorithm.

Ipbcast is a gossip-based message dissemination
protocol that has been used to implement a pub-
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lish/subscribe system [6]. It uses a scalable membership
management algorithm where each member maintains
membership information for only a random subset of
members in the group. In addition, the protocol uses an
age-based garbage collection scheme to purge old mes-
sages from the system [10]. More specifically, a member
in this protocol associates an age with each message in
its buffer. The age is initialized to O when the message
is first received and is updated in each gossip round to
reflect the amount of time the message has spent in the
system. A member discards messages with a high age
when its buffer is full.

A common goal of both Ipbcast and RRMP is to allo-
cate buffer space to useful messages in the system. How-
ever, the two protocols are different in significant ways.
In Ipbcast, a member sends a gossip message to some
randomly selected destinations periodically. Messages
that have been gossiped for a long time tend to be deliv-
ered by many processes. Such messages are considered
less useful to buffer than recently published messages.
In contrast, a member in RRMP sends retransmission
requests to randomly selected members upon detection
of a message loss. Messages that have been requested
recently are likely to be needed by other members. Such
messages are buffered for a longer period of time under
our feedback-based buffering scheme. Moreover, the
protocol employs a two-phase buffering algorithm that
scales well in a heterogenous network.

8 Conclusion

Designing an efficient buffer management algorithm
is challenging in large multicast groups where no mem-
ber has complete group membership information and the
delivery latency to different members could differ by or-
ders of magnitude. This paper has presented an inno-
vative two-phase buffering algorithm that explicitly ad-
dresses variations in delivery latency seen in large multi-
cast groups. Unlike tree-based protocols where a repair
server bears the entire burden of buffering messages for
a local region, RRMP achieves better load balancing by
spreading the load of buffering among all members in
the region. Compared with stability detection protocols,
our buffering algorithm has low traffic overhead because
it does not require periodic exchange of message history
information among members in the group. Simulation
and experimental results demonstrate that the algorithm
has good performance.

Although we present our buffer optimization in the
framework of the RRMP protocol, similar techniques
can be applied to other reliable multicast protocols as
well. In the following we summarize the main ideas in
our algorithm and discuss how they can be applied to the
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SRM protocol:

e The dissemination status of the initial IP multicast
for each message can be different. A good buffer-
ing algorithm should adaptively allocate buffer
space to messages most needed in the system.

e Retransmission requests can be used as feedback
to estimate the dissemination status of a multicast
message. In the SRM protocol, retransmission re-
quests and replies are multicast to the entire group.
If a receiver has not received any request for a mes-
sage after a sufficiently long period of time, it can
conclude that the message is stable. Such informa-
tion can be helpful to the application in managing
its buffer space.

e In a large multicast group, it may take a long time
for a message to become stable. While research
on stability detection focuses on optimizing buffer
space after a message has become stable, our work
aims to reduce buffer space even before stability
has been achieved. In the context of SRM, instead
of having every receiver buffer a message until the
message is stable, a randomly selected subset of re-
ceivers can serve as bufferers for the message.

e In a wide area network, the latency between two re-
gions can be much higher than the latency within a
region. Our buffering algorithm addresses this dif-
ference in latency by dividing buffer space into two
parts: the short-term buffer allows a local loss to
be recovered quickly within the local region, while
the long-term buffer serves to satisfy remote re-
quests from downstream regions without consum-
ing too much buffer space. Although the origi-
nal SRM protocol is unstructured, extensions have
been made to introduce an error recovery hierarchy
into the protocol [11, 14]. Our two-phase buffering
scheme can be applied in such a hierarchy.
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