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1. INTRODUCTION

Cloud elasticity refers to the ability of Cloud 
infrastructure to dynamically make resource 
provision for Internet applications and services, 
according to their real time requirements. That 
feature of Cloud Computing has several appealing 
implications. It eliminates the dilemma of planning 
IT infrastructures for Cloud users, where under-

provisioning compromises service quality while 
over-provisioning wastes investment as well as 
electricity. It offers virtually infinite resource to 
Cloud users (Armbrust et al., 2009). It has also 
made the desirable “pay as you go” accounting 
model possible.

Planning new IT infrastructure for growing 
demands of Internet applications is complicated. 
It calls for successful prediction on how appli-
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Cloud computing allows business customers to elastically scale up and down their resource usage based 
on needs. This feature eliminates the dilemma of planning IT infrastructures for Cloud users, where 
under-provisioning compromises service quality while over-provisioning wastes investment as well as 
electricity. It offers virtually infinite resource. It also made the desirable “pay as you go” accounting 
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hypervisor, Virtual Machine (VM) migration scheduler and VM replication. The authors also investigate 
the load prediction algorithm for its significant impacts on resource allocation.
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cation loadings would change in the future and 
is particularly hard for Start-Ups since market 
response is not clear in advance. When it knocks 
against flash-crowd, self-maintained servers may 
fail to satisfy the need of surging requests. On the 
contrary, over provisioning caused by optimistic 
prediction leaves the server under-utilized, and 
consequently causes waste in energy and excess 
investment in fixed asset. In Cloud environment, 
however, application maintainers need not worry 
about such problems since the Cloud resource 
allocation automatically scales up and down on 
changing load, and the users are billed accordingly.

Sometimes, particularly in data mining ap-
plications, a user may require a large number 
of servers for a short period. It is hard to satisfy 
such requirement if it were not for Cloud comput-
ing. A successful example is, “The Washington 
Post uses Amazon EC2 to turn Hillary Clinton’s 
White House schedule—17,481 non-searchable 
PDF pages—into a searchable database within 24 
hours.” (“AWS Case Study: Washington Post,” 
n.d.). In colleges, researchers may have similar 
requirements when processing huge amount of 
experiment data.

There are different approaches to Cloud elastic-
ity depending on how the Cloud infrastructure is 
constructed and what types of applications run-
ning over it. In the next sections, we are going 
to introduce some popular technologies adopted 
nowadays Cloud Services. Then we start from 
basic components of a Cloud infrastructure to 
explain our own work that handling Cloud elas-
ticity in a real IaaS service. In the end, we will 
point out, in our perspective, the trend of Cloud 
elastic technologies.

2. BACKGROUND

Traditionally, Cloud services are categorized into 
Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS) and Software as a Service (SaaS). 
IaaS provides virtual machines to Cloud users. 

IaaS users are responsible for application develop-
ment, deployment and management. PaaS take the 
burden of application management by providing 
development tools and deployment platform. SaaS 
model is actually “old wine in new bottles” for 
conventional Internet applications.

In an IaaS system, virtual machines are 
generally overcommitted to physical servers to 
maximize profit from hardware investment and 
cut down power budget. Cloud elasticity in that 
environment addresses the challenge of resource 
provisioning for dynamic load of virtual machines. 
For example, if physical server cannot satisfy the 
resource requirements of its virtual machines, 
some of them are going to be migrated to other 
servers so that application performance is assured.

It is hard for application developers to predict 
the user load. In PaaS systems, user applications are 
managed by Cloud infrastructure to relive develop-
ers of the difficult of deployment, so that they can 
concentrate on application function. Generally, the 
applications deployed in PaaS are developed by 
designated program language, development tool 
and libraries and encapsulated in managed execu-
tion engines. An execution engine is a sandbox 
allocated with a share of CPU resource. Execution 
engines have uniform management interface for 
life cycle control and performance monitoring. 
Elasticity mechanism dynamically adjusts the 
number of execution engines belonging to an 
application to suit its load.

The situation in SaaS is similar to that in PaaS. 
A SaaS service could be built upon a PaaS ser-
vice to indirectly utilize its elasticity mechanism. 
Some large SaaS services choose to implement 
dedicated elasticity mechanism for application 
specific optimizations (Chen et al., 2008) (Chase 
et al., 2001). Here we just talk about stateless 
computing resource. The discussion of data storage 
technologies like Google File System (Ghemawat, 
Gobioff, and Leung, 2003) and Big Table (Chang 
et al., 2008) belongs to another dedicated field out 
of scope of this chapter.

IG
I G

LO
BAL PROOF



303

An Infrastructure-as-a-Service Cloud

This chapter focuses on the Cloud elasticity 
technologies adopted in IaaS systems. We are go-
ing to illustrate the dynamic resource provisioning 
mechanisms and policies in the PKU Cloud, a real 
IaaS system that supporting research in Computer 
Department of Peking University.

The PKU Cloud adopts typical structure of 
Cloud infrastructure depicted in Figure 1. Its fun-
damental part is a virtualized data center hosting 
several tens of blade servers. The Xen hypervisor 
virtualize each physical server into several virtual 
machines. Based on the hypervisors and the virtual 
machines, the PKU Cloud incorporates peripheral 
services such as storage, security, and management 
to provide an integrated solution. Although inno-
vative network structures like FatTree (Al-Fares 
et al., 2008) and VL2(Greenberg et al., 2009) are 
emerging, conventional tree structure is the most 
widely adopted one for data center network. The 
conventional tree structured data center network 
is composed of a router, several core switches, 
and many top of rack switches. In practice, a 
data center generally has more than one router 
and core switches for fail-safe or performance 
purpose. Data center network connect servers to 
each other and to the outside Internet. Storage 
Area Network (SAN) connects the servers with 
back end centralized storage devices.

The PKU Cloud implements elasticity at three 
levels. Consider a scenario where the load of an 
application keeps rising. Virtual machines con-
taining the application components begin asking 
for more CPU and memory from the hypervisor 
layer. Idle resources of the physical servers are 
assembled and put into use by the hypervisors. 
Most of the time, virtual machines are not fully 
loaded. Physical servers usually have some re-
source reservation for transient load pulse, even 
though they are sometimes over-committed. 
However, the application load keeps going up. 
Resource reservation in some physical servers is 
consequently exhausted. In this case, hypervisors 
has to balance resource allocation among the 
virtual machines sharing the same physical 

server to avoid unacceptable degradation of Qual-
ity of Service (QoS). In the next section, we are 
going to discuss in details the resource scheduling 
technologies at the hypervisor level.

Live migration (Clark et al., 2005) allows a 
virtual machine to be migrated from one physical 
server to another, without interrupting the appli-
cation running in that virtual machine. Ideally, 
layout of virtual machines on physical servers 
can be dynamically adjusted with live migration 
to a state that Service Level Agreement (SLA) is 
always satisfied as long as there are idle resources 
available in any physical server in the system. This 
feature is appealing in case of flash crowd. When 
application load may get high enough that no mat-
ter how the hypervisor allocates the resources to 
virtual machines, there are always some applica-
tions that cannot get enough resource to achieve 
acceptable performance regarding to SLA. Live 
migration, however, incurs network overhead be-
cause it involves transferring the memory image 
along with other states of a virtual machine from 
one server to another. When network resource is 
busy, using live migration may make the situa-
tion worse. In addition, migration may last for an 
uncertain period of time depending on network 
traffic; therefore it is unwise to incorporate migra-
tion for a transient overload. Due to the limitations 
of live migration, the aforementioned ideal state 
is hard to achieve. In the section “elasticity with 
live migration”, we are going to elaborate on how 
the PKU Cloud uses live migration for resource 
provisioning.

Performance scalability with service replica-
tion has been adopted in web applications (Chase 
et al., 2001) long before. Stateless tiers of an ap-
plication, like web front end and thinking logic 
are replicated in case of flash crowd. An appli-
cation level switch is responsible for redirecting 
incoming requests to the right place. In virtual-
ized environment, the mechanism stays the same 
except that application tiers are encapsulated in 
virtual machines. But the applications nowadays 
are growing more and more complicated. On one 
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hand, they occupied large amount of memory even 
in idle. On the other hand, the process of starting 
or shutting down an application typically lasts too 
long to react to flash crowd in time. In the section 
“elasticity in Internet applications”, we address 
those issues with the PKU Cloud approaches to 
Cloud elasticity at the application level.

The nature of resource scheduling is to pro-
vision resources reasonably to applications in 
the future. If the future load could be known 
beforehand, an offline algorithm can calculate 
an ideal resource scheduling solution so that all 
application requirements are satisfied if possible 
and that the performance of the Cloud infra-
structure is maximized. However, it is usually 
impossible to know the load in advance. In this 
case, prediction algorithm, making estimation 
of a random variable according to its history and 
other factors, helps understand the trend of how 
the load would change overtime. Prediction is a 
well-studied topic in fields such as stock market 
prediction and weather forecasting. In the field 
of Cloud computing, many research works and 
systems have already incorporated that technol-
ogy. In section “load prediction”, we are going to 
introduce two kinds of load prediction algorithm.

3 RESOURCE SCHEDULING 
IN HYPERVISOR

Generally, physical servers are overcommitted by 
virtual machines. For example, a CPU intensive 
and a memory intensive virtual machine are put 
together to share a server to improve utilization. 
Combining virtual machines with alternate peak 
time takes effect likewise. When load changes, the 
hypervisor is responsible for adjusting resource 
allocation among the virtual machines. Three types 
of resources are usually considered: CPU, memory, 
and I/O resource. We are going to look into the 
each kind of resource respectively to understand 
how elasticity is realized at the hypervisor level. 
We assume you have basic knowledge of virtu-
alization in this chapter or you can refer to the 
design of Xen hypervisor (Barham et al., 2003).

3.1 Virtual CPU Scheduler

In Operating System, process scheduling is a 
well-explored area. OS processes are multiplexed 
on CPU cores in an elastic time-division manner. 
Process scheduler incorporates priority and time 
slice for fair allocation of CPU time as well as 

Figure 1. Architecture of a virtualized data center
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maximum utilization. A process can use more 
CPU time than its share as long as idle CPU 
times are available. A greedy process, however, 
is constrained to its fair share so that other pro-
cesses are not affected negatively. In a virtualized 
environment, the mapping of OS processes to 
physical CPU cores is indirect. Firstly, a process is 
scheduled onto a Virtual CPU (VCPU) of its con-
taining virtual machine by the process scheduler 
in the guest operating system. When the VCPU 
acquires CPU time slice, the process is executed. 
Scheduling VCPUs onto physical CPU cores is 
performed by VCPU scheduler in the hypervisor. 
VCPU scheduler and process scheduler have com-
mon objectives such as fairness and performance.

All physical servers in the PKU Cloud are 
configured to use Credit (“Credit Based Sched-
uler”, 2007), the default VCPU scheduler of Xen 
hypervisor. In Credit, each virtual machine is as-
sociated with two properties, a weight and a cap. 
The weight tells the proportion of CPU time a 
virtual machine should have relative to each other; 
while cap tells the upper limit. We use a two-tuple 
<weight, cap> to represent a virtual machine with 
its weight and cap. Consider two virtual machines, 
A <100, 80%> and B <100, 60%>, which share 
a server. If the CPU load in both of them exceeds 
50% of the capacity of the server, they get 50% 
each. Otherwise, unused CPU time of one virtual 
machine can be utilized by the other. For example, 
A can get up to 80% if B uses only 10%, leaving 
the other 10% CPU time unused. On the contrary, 
B can get up to 60%.

3.2 Memory Allocation 
among Virtual Machines

Memory resource is quite different from CPU 
resource for its usage is almost independent of 
application load. A sophisticated application may 
require a large amount of memory even if the 
load is low (Karve et al., 2006). The hypervisor 
needs special measurement for memory require-

ment. This is important because allocating and 
reclaiming memory among virtual machines in-
volves modifying the page table and invalidating 
the Translation Lookaside Buffer (TLB) which 
incurs overhead. Sometimes, for security reason, 
a memory page should be flushed (i.e., zeroed 
out) before being allocated. Otherwise, data of the 
virtual machine that page belonged to is leaked 
to the one getting it.

The PKU Cloud adopts Ballooning (Wald-
spurger, 2002) technology to share memory 
between Virtual Machines on the same physical 
server. When memory is scarce, for example, a new 
virtual machine being created, unused memory 
can be squeezed out of other virtual machines and 
reallocated to the one where it is required. That is 
achieved by a “balloon” process devised in each 
guest OS. It is under the control of the hypervisor. 
When the hypervisor squeezes memory from a 
virtual machine, it sends a “deflate” request to the 
balloon process in that virtual machine. Then, the 
ballooning process requests specified amount of 
memory from OS. On a successful operation, the 
balloon process pins the memory it has acquired 
(so that corresponding pages are never swapped 
out), picks the corresponding page frames off the 
page table and hands the frames to the hypervisor. 
Inversely, when the hypervisor returns memory, 
the balloon process executes an “inflate” operation. 
It hooks those page frames to the page table again, 
unpins the memory and frees it back to OS. The 
memory is like air that flows from one balloon to 
another. For this reason, the technology is called 
“ballooning”. Although ballooning provides a 
mechanism of sharing memory, it is a hard problem 
to find out how much memory a virtual machine 
requires. It is similar to the classical problem of 
determining the size of the process working set. 
The current solution in the PKU Cloud is Self-
ballooning (Magenheimer, 2008). It is a daemon 
residing in Linux guest OS, periodically reading 
the value of “Commited_AS” item in the “/proc/
meminfo” system file as a coarse estimation on 
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future memory usage. According to the estimation, 
it actively adjusts the memory usage with the bal-
loon driver. That approach can be improved, since 
we found by experiment that the estimation is too 
simple to exclude aged page cache. VMware ESX 
server adopts a random page sampling technique 
(Waldspurger, 2002) to measure the working set 
of a virtual machine: during each measurement 
period, a random subset of pages in the VM’s 
(pseudo) physical memory are invalidated by the 
hypervisor so that a subsequent access will result 
in a trap. This allows the hypervisor to collect 
statistics on how much memory is being actively 
used by the guest OS. The default sampling rate 
in ESX is 100 random pages every 30 second. 
Experiment result in that work showed a smooth 
and tight track of the actual memory usage. In 
another work (Wood et al., 2007), swap activities 
are used as the signal of memory shortage. Once 
abrupt increase of swap activities of a virtual ma-
chine is detected, memory is inflated by a step of 
32 megabyte. In practice, that method is so lazy 
that the application performance is compromised.

Transcendent Memory (TMEM) (Magen-
heimer, 2009) takes another approach. As we 
know, page cache used to accelerate the file ac-
cess tends to eat up memory. While some virtual 
machine is suffering from the memory shortage, 
others may occupy a lot in the page cache for 
infrequently used files. To avoid that unfairness, 
TMEM maintains a shared memory pool in the 
hypervisor for centralized management of page 
cache. The pool is virtualized so that each virtual 
machine can have one or more virtual pools for 
convenience. A virtual pool can be ephemeral or 
persistent. Data put into an ephemeral pool may 
be forgotten because of memory shortage. But 
the availability of data put into a persistent pool 
is guaranteed. To use TMEM, the page cache and 
swap implementation in guest OS are extended 
with two operations, precache and preswap, re-
spectively. Before a clean page in the page cache 
is reclaimed, its data is written to an ephemeral 
pool. When the page is read next time, the OS 

first tries to read it from the ephemeral pool. If 
the read operation succeeds, which means the 
data has fortunately survived, a time-consuming 
disk I/O operation is saved. Since the precache 
operation works like page cache without using 
memory dedicated to a virtual machine, a virtual 
machine only needs to occupy a small amount 
of memory for OS kernel and application code. 
Sometimes, a virtual machine needs to swap out 
some pages. Before the data of a page is eventu-
ally swapped out to the disk, the OS tries to put 
it to a persistent memory pool. If the operation 
succeeds, data of that page is retrieved from the 
pool the next time when it is accessed. Again, a 
disk I/O operation is saved.

TMEM evades the difficulty of working set 
measurement. But it is more complicated to 
implement than ballooning. To the time of this 
writing, TMEM has been implemented in the Xen 
hypervisor. We plan to update Xen hypervisor in 
PKU Cloud to support the TMEM.

3.3 Scheduling I/O Resources

Network and disk are two essential I/O resources 
that are closely related to the application perfor-
mance. I/O virtualization involves the sharing of 
a set of network interface cards (NIC) and the 
disk of a physical server among virtual machines 
running over it. Hypervisor is responsible for 
creation of virtual devices exposed to the guest 
OS and the multiplexing of real I/O devices. In 
order to understand how I/O resource is scheduled 
in a virtualized environment, we look into a typi-
cal implementation, the split driver model in the 
Xen hypervisor.

There is a privileged virtual machine, called 
domain 0, on the Xen hypervisor. It contains all 
the drivers required to manipulate real devices 
like gigabyte NICs or IDE disks. Common virtual 
machines, called domain U, do not have such 
drivers. They indirectly access the real devices 
by a mechanism called the split driver model. 
Each virtual device corresponds to a split driver 
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composed of a front-end and a back-end driver 
in the domain U and the domain 0, respectively. 
Both ends are tied together by Xen hypervisor’s 
communication mechanism including shared 
memory and event channel. The front-end driver 
accepts requests from the OS in domain U, while 
the back-end driver handed these requests to a 
real driver. On receiving data, the back-end driver 
will notify the front-end driver about new arrivals 
in the shared memory. I/O resource Schedulers 
stand between the back-end driver and the real 
driver. They decide when and in which order the 
requests are handled.

Although the PKU Cloud follow the traditional 
I/O scheme and works fine so far, but the intricate 
characteristics of I/O systems make fairness and 
isolation quite difficult. Here we name a few to 
show the tip of the iceberg.

Accessing disk data involves slow mechanical 
movements. It is hard to determine how long such 
an operation will take since the associated head 
position is unknown beforehand. Not to mention 
Redundant Array of Independent Disks (RAID) or 
hybrid storage systems composed of Solid-State 
Drive (SSD) and traditional hard disk. Thereby 
traditional disk I/O scheduling algorithms like 
Completely Fair Queuing (CFQ) (Love, 2004) pur-
suing fairness in request numbers cannot achieve 
good fairness and isolation. Gulati pointed out 
that there is a tradeoff between performance and 
fairness (Gulati et al. 2007). VIOS (Seelam and 
Teller, 2007) improves by fairly allocating disk 
time to virtual machines. AutoControl (Padala et 
al., 2009) extends such fairness to application level.

A virtual disk may be an image file in the 
file system, a logic unit in the iSCSI storage or 
a disk partition on a local hard disk. But the I/O 
scheduler in the guest OS is unaware of that detail. 
It is generally optimized for a single exclusive 
hard disk incorporating technics like anticipatory 
reading and reordering requests for a shorter head 
movement. At the hypervisor level, however, 
the I/O requests from different guest OSes are 
scheduled again. Mutual interference of the two 

schedulers may result in an awkward situation. 
In the XenServer, a commercial version of Xen 
hypervisor, the noop scheduler using simple FIFO 
algorithm, is adopted by default at the hypervisor 
level. Another possibility is to leave that task to 
the storage system.

Scheduling network resource seems simpler 
than scheduling disk I/O if only bandwidth of NICs 
is taken into account. Sometimes, however, the 
links among switches and routers in data center 
network may become critical resources due to a 
hot application or malware. Fairness and isolation 
at this level is quite difficult. Seawall (Shieh et 
al., 2011) introduces a sophisticated approach to 
this problem. It is an end-to-end solution without 
a central coordinator. Only modification to the 
hypervisor software is required.

I/O virtualization is a fast changing field. New 
technologies keep emerging. Our discussion is 
however limited due to the lack of space.

4 CLOUD ELASTICITY 
WITH LIVE MIGRATION

Resource scheduling at the hypervisor level real-
izes limited elasticity owing to the fixed capacity 
of a physical server. Migration of virtual machines 
breaks up the limitation by utilizing resources 
from other servers. Figure 2 sketches how it 
works. Consider a data center with three physical 
servers: A, B, and C. At the beginning, as shown 
in the upper left part of Figure 2, server A and 
B are running five virtual machines each. They 
are reasonably loaded (tagged with “WARM”). 
Server C is standing by to save electricity. When 
workload grows, server A cannot afford the ag-
gregate resource requirements of its five virtual 
machines (tagged with “HOT”). We say that server 
A is a hotspot. A virtual machine scheduler (not 
shown in Figure 2) detects the hotspot and thereby 
initiates a migration schedule that migrating two 
virtual machines from server A to C. After the 
migration finishes, as shown in the lower right 
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part of Figure 2, the hotspot is resolved. Resource 
demands of applications are consequently satis-
fied. Assume that the workload begins to shrink 
now. Resource utilization of server A and C 
drops dramatically. The utilization of server A 
and C (tagged with “COLD”) is too low to be 
power efficiently. The virtual machine scheduler 
therefore initiates another migration schedule 
that dynamically consolidates virtual machines 
on under-utilized servers together. The released 
server C again enters low power state. Now, the 
servers return to their original states.

Some important details are left out in the above 
scenario for abstraction. As we mentioned in the 
BACKGROUND section, live migration incurs 
network overhead and takes some time. Only 
persistent change in resource demands deserves 
migration. The virtual machine scheduler (VM 
scheduler) incorporates load prediction technics, 
which we will describe later, to differentiate 
stable workload change from transient fluctuation. 
Depending on the estimation of future workload, 
it needs to decide which virtual machine to migrate 
away and to where. It will be demonstrated later 
that solving the problem is an NP-hard problem. 
Only heuristics algorithms are pragmatic. The 
rest of the section will first illustrate the widely 
adopted architecture for VM schedulers and then 
focus on the migration policies. For convenience, 

the acronym VM and PM are used in the follow-
ing text to denote a virtual machine and a physi-
cal server/machine respectively.

The VM scheduler of the PKU Cloud is shown 
in Figure 3. This centralized architecture is also 
adopted in other VM schedulers such as Sandipiper 
(Wood et al., 2007), Harmony (Singh, Korupolu, 
and Mohapatra, 2008) and Usher (McNett et al., 
2007). Each PM runs a hypervisor with a Node 
Manager. The node manager collects from the 
hypervisor the real-time usage statistics of re-
sources for each virtual machine on that PM. The 
statistics collected at each PM are forwarded to 
the VM scheduler. The VM Scheduler is invoked 
periodically and receives from the Node Manager 
the resource demand history of VMs, the capac-
ity and the load history of PMs, and the current 
layout of VMs on PMs.

The VM scheduler has several components. 
The Load Predictor predicts the future resource 
demands of VMs and the future load of PMs based 
on past statistics. The load of a PM is computed 
by aggregating the resource usage of its VMs. 
The Node Manager at each node first attempts to 
satisfy the new demands locally by the resource 
allocation mechanism in the hypervisor. The 
Scheduling Algorithm module detects if the re-
source utilization of any PM is above the hot 
threshold (i.e., a hot spot). Then it decides on 

Figure 2. Elasticity with live migration
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which VMs running on hot spots should be mi-
grated away to reduce their load. It also identifies 
under-utilized PMs and decides whether they 
should be released by migrating their VMs away 
so that they can be turned off to save energy. The 
Scheduling Algorithm finally compiles a migra-
tion list of VMs and passes it to the Dispatcher, 
who in turn contacts the Node Manager for the 
execution of the planned migration.

Many algorithms can be incorporated in this 
framework. One category borrows solutions from 
well-studied theoretic models (Bobroff, Kochut, 
and Beaty, 2007) (Xu and Li, 2011). The other 
use pragmatic heuristics which model expected 
scheduling objectives (Wood et al., 2007) (Singh, 
Korupolu, and Mohapatra, 2008). The PKU Cloud 
incorporated two algorithms. The online bin-pack-
ing algorithm belongs to the first category, while 
the Skewness algorithm belongs to the latter one.

4.1 Online Bin-Packing Algorithm

The classical bin packing problem consists of 
packing a series of items with sizes in the interval 
(0, 1] into a minimum number of bins with capac-
ity one. We can model VM scheduling as the bin 
packing problem where each PM is a bin and each 
VM is an item to be packed. Resource provision 
is implicitly assured by the rule that the size of 
items (resource requirement) is less than the bin 

size (resource allocation), while over provision-
ing is avoid by the objective of using a minimum 
number of bins. We assume that all PMs are ho-
mogeneous with unit capacity. We normalize the 
resource demands of VMs to be a fraction of that 
capacity. For example, if a VM requires 20% of 
the physical memory of the underlying PM, then 
it corresponds to an item with size 0.2. If other 
resource types such as CPU and I/O are consid-
ered, the size of an item can be represented by a 
vector whose elements are normalized demands 
of the VM corresponding to the resource types. 
That variation is called vector bin-packing.

The bin-packing problem is well-known to be 
NP-hard. Although it has been studied extensively 
in the literature, pure theoretic solutions do not 
work well in data center environments. Offline 
algorithms can achieve a performance very close 
to the optimal algorithm, but they assume the 
entire sequence of items to be packed is known in 
advance (Garey and Johnson, 1985). More intri-
cately, in data center environment, the size of an 
item is changing. Rerunning an offline algorithm 
in each round of scheduling, however, incurs too 
many migrations to be practical. Online algorithms 
that pack incoming items incrementally make no 
attempt to minimize the movements of already 
packed items because the overhead of migration 
is hard to model in the framework. When applied 
to VM scheduling, they need modifications to 
constrain the frequency of migration.

We have designed a practical online bin-
packing algorithm (Xiao et al., 2010) that applied 
to an IaaS Cloud service which supports over 
200 people in a lab of Peking University. We 
get this core algorithm by extending an existing 
one-dimensional online bin-packing algorithm 
(Gambosi, Postiglione, and Talamo, 2000) with the 
approximation ratio as low as 3/2, which represents 
a quite good performance for an online algorithm. 
In the original algorithm, items are categorized 
into four types: Tiny (T), Small (S), Large (L), 
Big (B) items. Item size of the four types falls in 

Figure 3. Architecture of a VM Scheduler
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intervals (0, 1/3], (1/3, 1/2], (1/2, 2/3], (2/3, 1], 
respectively. There are seven combinations of 
items in a bin:

•	 A B-bin has only one B-item.
•	 An L-bin has only one L item.
•	 An LT-bin has only one L-item and a cer-

tain number of T-items.
•	 An S-bin has only one S-item.
•	 An SS-bin has only two S-items.
•	 An LS-bin has only one S-item and one 

L-item.
•	 A T-bin has only a certain number of 

T-items. It is called unfilled if the available 
space is no less than 1/3. Otherwise, it is 
called filled.

On arrival of a new item, an insert operation 
is executed that keeps the following three rules 
for bin usage:

•	 At any time, only six types of bins: B-bin, 
L-bin, LT-bin, S-bin, SS-bin, T-bin are al-
lowed in the system.

•	 At any time, if there exists a T-bin, then 
there is no L-bin, and the available space 
in any LT-bin is less than 1/3.

•	 At any time, there are at most one S-bin 
and at most one unfilled T-bin.

It can be proved that based on the above 
rules, the approximation ratio of this algorithm 
is bounded by 3/2. The proof is skipped due to 
lack of space.

However, the original algorithm cannot handle 
size changing of an item. We extend it by adding 
a change operation to handle the situation where 
item type changes and the above rules are violated. 
It has been proved that a change operation invokes 
no more than 7 movements (migrations) and an 
insert operation no more than 3. This property 
effectively constrains the number of migrations.

We also extend it to multi-dimensional by 
breaking down items according to their largest 

dimensions. The approximation ratio is bounded 
by 3/2*d, where d is the number of dimension 
under consideration. The worst case is when each 
item has a different dominating dimension. For 
example, when d = 3, the items (1, 0, 0), (0, 1, 0), 
and (0, 0, 1) can be packed into a single bin under 
the optimal algorithm, but need three bins in this 
one. This ratio is rather unimpressive at a first 
glance. But there are not that many dominating 
dimensions in practice. Most practical systems 
consider only one or two types of resources (e.g., 
CPU and memory) in their allocation decision.

We used several optimizations when applying 
this algorithm to a real environment. The size of 
each bin is intentionally shrunk a little compared 
to the real capacity of the PM. The reserved capac-
ity helps avoid SLA violation in face of transient 
load fluctuation. Though we assume that PMs are 
homogeneous, a practical data center generally 
contains different types of servers. This problem 
can be solved by grouping identical servers to-
gether and running a VM scheduler for each group. 
Sometimes the whole system under the manage-
ment of the VM scheduler may be overloaded. 
In contrast to the assumption of infinite bins, the 
reality is, bins are used up. To solve this problem, 
the capacity of bins can be magnified by a certain 
percentage until a solution is found. That technic 
makes sure that all PMs are evenly overloaded to 
avoid any application is unfairly treated.

4.2 The Skewness Algorithm

Bin-packing based algorithms are aggressive in 
packing VMs. Therefore load change can easily 
incur migrations. In other words, it trades stabil-
ity and performance for using a fewer number 
of active PMs. In practice, however, the loss of 
QoS is much severer than the waste of electricity 
to a Cloud provider. The pragmatic algorithms 
are more conservative. They prefer performance 
to green computing. Many of them even do not 
perform green computing (Wood et al., 2007) 
(Singh, Korupolu, and Mohapatra, 2008).
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In favor of performance and stability, we de-
signed a pragmatic algorithm, skewness (Xiao, 
Song, and Chen, 2011), into the aforementioned 
Cloud system. It is inspired by the fact that if a 
PM runs too many memory-intensive VMs with 
light CPU load, much CPU resources will be 
wasted because it does not have enough memory 
for an extra VM. We introduce the concept of 
skewness to qualify the unevenness in the utiliza-
tion of multiple resources on a server. Let n be 
the number of resources and ri be the utilization 
of the i-th resource. The resource skewness of a 
server p is defined as

skewness p
r

r
i

i

n

( ) ( ) ,= −
=
∑ 1 2

1

 

where r is the average utilization of all resources 
for server p. In practice, not all types of resourc-
es are performance critical and hence only bottle-
neck resources are considered in the above cal-
culation.

We use several adjustable thresholds that 
control tradeoff between performance and green 
computing. The “hot threshold” defines the ac-
ceptable upper limit of resource utilization. We 
define a server as a hot spot if the utilization of 
any of its resources is above the hot threshold. 
We define the temperature of a hot spot p as the 
square sum of its resource utilization beyond the 
hot threshold: 

temperature p
tr r

r R

( ) ,( )= −∑
∈

2

 

where R is the set of overloaded resources in 
server p and rt is the hot threshold for resource r. 
(Note that only overloaded resources are consid-
ered in the calculation.) The temperature of a hot 
spot reflects its degree of overload. If a server is 
not a hot spot, its temperature is zero. The “cold 
threshold” denotes the acceptable lower limit of 
resource utilization. A server whose utilization of 
all resources is under the cold threshold is defined 

as a cold spot. The “green computing” threshold 
defines the utilization level of all active PMs, under 
which the system is considered power-inefficient 
therefore green computing operations get involved. 
Finally, the “warm threshold” defines the ideal 
level of resource utilization that is sufficiently 
high to justify having the server running but not 
so high as to risk becoming a hot spot in the face 
of temporary fluctuation of application resource 
demands.

For each scheduling round, the skewness takes 
two steps, hot spot mitigation and green computing, 
to calculate a migration list. In hot spot mitiga-
tion, we try to solve all hot spots in descending 
order of temperature. For each hot spot, we try to 
migrate away the VM that can reduce the server’s 
temperature the most. In those servers that can 
accommodate the VM without becoming a hot 
spot, we choose a server with most skewness 
reduction by accepting this VM as the migration 
destination. This does not necessarily eliminate the 
hot spot, but at least reduces its temperature. Hot 
spot mitigation step is finished after all hot spot 
are processed. If the overall resource utilization of 
active servers is lower than the green computing 
threshold, a green computing step is invoked. In 
the green computing step, we try to solve cold 
spots in ascending order of the memory utiliza-
tion, which representing the efforts taken to solve 
a cold spot. To resolve a cold spot, all of its VMs 
need to be migrated away. The destination of a 
VM is decided in a way similar to that in the hot 
spot mitigation, but its resource utilization should 
be below the warm threshold after accepting the 
VM. We also restrict the number of cold spots that 
can be eliminated in each run of the algorithm 
to be no more than a certain percentage, for ex-
ample 5%, of active servers in the system. Those 
arrangements are to avoid over consolidation that 
may incur hot spots later. The movements gener-
ated in both steps above are then consolidated so 
that each VM is moved at most once to its final 
destination. For example, hot spot mitigation may 
dictate a VM to move from PM A to PM B, while 
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green computing dictates it to move from PM B to 
PM C. In the actual execution, the VM is moved 
from A to C directly.

With lower hot spot threshold, the skewness 
algorithm reacts earlier to resource shortage by 
provisioning more resources. Lower cold threshold 
excludes more servers with relatively low load 
from being recycled. Lower green computing 
threshold postpone the green computing operation 
until the overall load decreases more. Both effects 
make the skewness algorithm more conservative 
when performing green computing. It is up to the 
Cloud provider who decides its tradeoff between 
performance and green computing. Generally 
speaking, we recommend low thresholds if ap-
plications with unstable workload dominate in the 
system, because more thrashing workload calls for 
more conservative resource reservation to absorb 
transient fluctuation hence SLA is assured.

4.3 Performance of the 
Two Algorithms

We evaluated both algorithms by simulation to 
understand their performance. We collected load 
traces from a wide range of real applications, 
including Web InfoMall, one of the largest web 
archive in China, RealCourse, a large scale online 
learning system that spread over 13 major cities, 
and Amazing Store, a large P2P storage system. 
We also collected traces from a DNS server and 
a mail server for Peking University. Traces are 
segmented in a per-day granularity. We use ran-
dom sampling and linear combination to generate 
workloads at required scales.

Both algorithms are evaluated in four aspects: 
effect of load balancing, effect of green computing, 

stability, and decision time. We use the number 
of hot spots to quantify the effect of load balanc-
ing. Small number of hot spots represents good 
effect of load balancing. We model the effect of 
green computing as the number of active physical 
machines (APM) throughout the evaluation. Less 
active physical machines mean more efficient 
usage of power. The stability of an algorithm 
is represented by the number of live migration. 
We define decision time as time required for an 
algorithm to calculate a scheduling plan in each 
scheduling round. In practice, decision time needs 
to be short enough that the system load distribution 
doesn’t change significantly when a scheduling 
plan is calculated.

The numbers in Table 1 are average numbers 
of hot spots in each round just before scheduling. 
With bin-packing algorithm, the number of hot 
spots is almost five times as many as that with 
Skewness algorithm. The bin-packing algorithm 
tends to maximize the utilization of resource, 
therefore it generally pack the APMs tighter than 
Skewness does. Consequently, with bin-packing 
algorithm, a hot spot is easy to be triggered due to 
load fluctuation. Unlike bin-packing, the Skewness 
maintains each active physical machine reasonably 
loaded so that transient load fluctuation could be 
absorbed without cause hot spots.The Skewness 
algorithm actually trade power consumption for 
performance. As show in Figure 4, we can see that, 
Skewness uses 10 - 20% more physical servers 
than bin-packing algorithm.

Table 2 shows the average numbers of migra-
tion in each round issued by both algorithms for 
the same workload. The migration is much more 
frequent with bin-packing than with Skewness 
because bin-packing is more sensitive to load 

Table 1. Average number of hot spots 

Scale in number of VMs 200 400 600 800 1000 1200 1400

Bin-packing 0.60 1.44 2.39 3.41 4.17 4.91 6.37

Skewness 0.15 0.35 0.48 0.57 0.76 0.98 1.10
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variance. In addition, the bin-packing algorithm 
carefully rules the layout of VMs over PMs; 
therefore it triggers more movement for adjustment 
than the Skewness algorithm.

Previous analysis (Xiao et al, 2010) (Xiao, 
Song, and Chen, 2011) reveals that the time com-
plexity of bin-packing and Skewness algorithm 
are O(log(n)) and O(n2) respectively, where n is 
the number of VMs. Experimental results shown 
in Table 3 perfectly conform to the analysis. The 
decision time of Skewness is more than one sec-
ond at a scale of 1400 VMs. In a system with 
10,000 VMs it is expected to grow to one minute. 
The decision time and migration time together 
would exceed scheduling interval. In practice, 
however, that is not problematic because the 
scheduling interval is much longer than one min-
ute for high stability. In addition, Servers in big 
data centers are generally grouped into smaller 
resource pool so that the scale is manageable.

5 CLOUD ELASTICITY IN INTERNET 
APPLICATIONS

Sometimes even if each virtual machine of an 
application occupied a dedicated physical server, 
the application load still asks for more resources. 
In such a situation, resource provisioning with 

local resource adjustment or migration do not 
work anymore because those mechanisms are 
unaware of what applications are running in vir-
tual machines. Many commercial platforms, e.g. 
Google App Engine, are capable of automatically 
replicating application instance for surging load. 
This section focused on the solutions adopted by 
the PKU Cloud for Web applications.

Figure 5 depicts the common architecture of a 
web application. The front end switch is typically 
a Layer 7 switch which parses application level 
information in Web requests and forwards them 
to the corresponding applications. The switch 
sometimes runs in a redundant pair for fault toler-
ance. In the PKU Cloud, the L7 Switch is running 
on a dedicated physical server, and application 
components are encapsulated in virtual machines. 
It is important that the application components 
are stateless so that they can be replicated safely. 
The elasticity of storage system belongs to another 
research domain out of the scope of this chapter. 
This section focused on the resource provisioning 
problem for the application tier.

Generally, a resource scheduler is responsible 
for the resource allocation. It monitors the load 
of each application as well as the resource utiliza-
tion statistics of physical servers. Based on the 
data it collects and layout of the applications over 
physical servers, it calculates a new resource al-

Figure 4. Number of active PMs
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location strategy that is better than the current 
one. The criteria for a “good” strategy depend on 
the particular system. The strategy, however, are 
commonly composed of two parts: the layout of 
applications’ replica on physical servers and the 
request rates each replica accepts. A minor adjust-
ment involves improving the dispatch policy of 
L7 switch. A major adjustment asks for starting/
stopping a replica or even starting/stopping a 
physical server.

5.1 Resource Allocation in MUSE

In MUSE (Chase et al., 2001), all applications are 
replicated on each server. Therefore all servers 
in the data center form a unified resource pool. 
Allocating resource to an application means in-
creasing the number of requests processed, while 
reclaiming resource from an application means 
reducing the number of requests processed. The 
convenience of such settings is that once an adjust-
ment is enforced, it takes effect instantly.

The MUSE system allows each application to 
bid for its requests, for example, one cent for each 
request below 1,000 per minute and half a cent for 
each request above 1,000 per minute. Generally, 
the application would bid lower when its through-
put is higher. It models the throughput as a linear 
function of CPU utilization, whose parameters are 
calculated from application performance history. 
Hence the energy cost of processing a request can 

be estimated on CPU utilization. By subtract the 
energy cost from the price an application can af-
ford, the resource scheduler can get the profit by 
processing each request. The resource scheduler 
is invoked periodically or by some predefined 
states such as the occurrence of hot spots. In 
each round the resources allocations are adjusted 
in four steps to maximize the total profit. First, 
the resource with negative return is reclaimed. 
Then the idle resources, as long as available, 
are allocated to profitable applications. For each 
overloaded server, resource allocated to the least 
profitable applications is reclaimed to bring it 
back to a normal state. Finally, if there exists any 
application x whose current bid is higher than 
application y, then the resource occupied by ap-
plication y should be reallocated to application x 
until equilibrium is reached.

This system was designed more than ten years 
ago when the applications are relatively simple. 
They do not need much memory so that a server 
can run a replica of each application. Today, the ap-
plications have become much more sophisticated. 
An application can easily occupy several Gigabytes 
of memory. Moreover, starting and stopping an 
application takes a long time. Therefore it is not 
applicable for the present Cloud environment.

5.2 Starting and Stopping 
Web Application

Some research works (Karve et al., 2006) (Tang 
et al., 2007) address resource allocation for so-
phisticated web applications. They adopt stopping 
a web application and then starting it on another 
server as the approach to change the placement of 
an application. To avoid too much overhead, they 
manage to minimize the usage of placement. Par-
ticularly, the allocation algorithm given by Tang 
et al. (2007) use network flow programming to 
maximize the performance of the current place-
ment of web applications. Therefore the placement 
operation is postponed until the placement cannot 
satisfy the load anymore.

Figure 5. Architecture of a Web application
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The resource allocation can benefit from the 
VM stop/resume mechanism. VM stop/resume 
is generally faster than starting/stopping an 
application directly because they skipped the 
time-consuming initialization process for large 
software. The latest stop/resume technology 
(Zhu, Jiang and Xiao, 2011) can accelerate such 
an operation to several seconds.

The capacity of data centers in the real world 
is finite. The illusion of infinite capacity in the 
Cloud is provided through statistical multiplexing. 
When a large number of applications experience 
their peak demand around the same time, the 
available resources in the Cloud can become 
constrained and some of the demand may not 
be satisfied. The amount of computing capacity 
available to an application is limited by the place-
ment of its running instances on the servers. The 
more instances an application has and the more 
powerful the underlying servers are, the higher the 
potential capacity for satisfying the application 
demand. On the other hand, when the demand of 
the applications is low, it is important to conserve 
energy by reducing the number of servers used.

We develop a system that provides automatic 
scaling for Internet applications in the PKU Cloud. 
We model the problem as Class Constrained Bin 
Packing (CCBP) where each server is a bin and 
each class represents an application. In the tradi-
tional bin packing problem, a series of items of 
different sizes need to be packed into a minimum 

number of bins. The class constrained version 
of this problem divides the items into classes or 
colors. Each bin has capacity v and can accom-
modate items from at most c distinct classes. It is 
“class constrained” because the class diversity of 
items packed into the same bin is constrained. The 
goal is to pack the items into a minimum number 
of bins. The class constraint reflects the practi-
cal limit on the number of applications a server 
can run simultaneously. For J2EE applications, 
for example, memory is typically the bottleneck 
resource. The capacity of a bin represents the 
amount of resources available at a server for all 
its applications. We develop an innovative auto 
scaling algorithm that achieves good demand 
satisfaction ratio and supports green computing.

6 LOAD PREDICTION

Load prediction has significant impacts on re-
source allocation. With an over-estimated load, 
a scheduler may allocate more resources than 
necessary. Therefore some of the resources are 
wasted. On the contrary, with an under-estimated 
load, the resource allocation may be insufficient. 
Consequently, VOD user may complain the video 
is not fluent and online game players may get angry 
because they cannot control an avatar.

We found that two categories of load predic-
tion algorithm are widely adopted. One category 

Table 2. Average number of migration 

Scale in number of VMs 200 400 600 800 1000 1200 1400

Bin-packing 4.91 11.66 17.78 23.92 29.95 36.67 43.21

Skewness 0.19 0.36 0.57 0.73 0.90 1.06 1.25

Table 3. Decision time (milliseconds) 

Scale in number of VMs 200 400 600 800 1000 1200 1400

Bin-packing 5.9 12.0 19.8 26.0 35.7 39.8 46.4

Skewness 38.8 115.5 233.5 349.9 529.9 674.6 1065.9
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composed of variations of the Exponentially 
Weighted Moving Average (EWMA) algorithm. 
It is designed based on the assumption that the 
future value of a random variable has strong 
relation to its recent history. It has been used in 
TCP for Round Trip Time (RTT) estimation for 
decades. Algorithms of the other category adopt 
the auto-regressive (AR) model. It requires more 
computation than EMWA based algorithms. But it 
can incorporate periodicity, which is hard to be uti-
lized in EWMA alternatives, for better precision.

6.1 EWMA Variations

With the original EWMA, load at time t is calcu-
lated byE t O t E t( ) ( ) ( ) ( ),= ∗ + − ∗ −α α1 1
0 1≤ ≤α ,  where E t( )  and O t( )are the esti-
mated and the observed load at time t, respec-
tively. The parameter alpha reflects a tradeoff 
between stability and responsiveness. The larger 
the alpha is, the more agile the estimated load will 
be (low gain). On the contrary, the smaller the 
alpha is, the more stable the estimated load will 
be (high gain).

The load prediction algorithm adopted in 
MUSE (Chase et al., 2001) is a variation of 
EWMA. It uses a high gain EWMA and a low 
gain EWMA. If the latest observed load does not 
deviate much from recent observations, the low 
gain EWMA is used. Otherwise the high gain 
EWMA is used. This eliminates occasionally noisy 
observations. The output is further processed by 
a hysteresis filter for stabilization. The working 
set size estimator (Waldspurger, 2002) in ESX 
server also incorporates a similar technique. It 
uses three EWMAs with high, medium and low 
gain. The highest EWMA is selected as output 
to avoid under estimation as much as possible.

We designed a “Fast Up and Slow Down” 
(FUSD) predicting algorithm for the load predic-
tor in the VM Scheduler of the PKU Cloud. It 
is worth noticing that EWMA does not capture 
the rising trends of resource usage. For example, 
when we see a sequence of O(t) = 10; 20; 30; 

and 40, it is reasonable to predict the next value 
to be 50. Unfortunately, when alpha is between 
0 and 1, the predicted value is always between 
the historical value and the observed one. This 
phenomenon easily cause under provisioning 
when load is rising. To reflect the “acceleration”, 
we take an innovative approach by setting alpha 
to a negative value. On the other hand, when the 
observed resource usage is going down, we want 
to be conservative in reducing the estimation by 
using a normal alpha. That’s why it is called “Fast 
Up and Slow Down”. It dramatically reduces the 
number of hot spots and live migration for Skew-
ness and bin-packing VM schedulers.

6.2 The AR Model

In some works, future load is modeled as a linear 
function of several other factors such as the load 
history, time, or resource allocation. The param-
eters can be calculated by training with data in the 
past. Then the model can predict the future load. 
This methodology is called Auto-Regression (AR), 
represented as AR(p), where p is the number of 
factors considered in this model. AR model works 
well for periodical load.

The Sandpiper VM scheduler (Wood et al., 
2007) adopts AR(1). It models the load at time t 
as a linear function of the average of n latest ob-
servations. It cannot utilize periodicity because it 
is unaware if the application is periodical. In the 
research on provisioning servers for connection-
intensive services (Chen et al., 2008), AR(n) is 
used to predict the number and login rate of MSN 
clients. The load is modeled as a linear function 
of six independent variables, two of the most 
recent observations and four of the observations 
at the same time in last four weeks. The results 
shows perfect fit between the predicted and the 
observed load. This is because the load of MSN 
clients presents perfect periodicity in its weekly 
pattern. We speculate that most popular Internet 
applications present such characteristics.
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7. FUTURE RESEARCH DIRECTIONS

Cloud ecology involves more than one Cloud 
vendor. The concept of Cloud federation is pro-
posed to architect software over multiple cloud 
services (Celesti et al., 2010). Besides vendor 
lock-in avoidance, applications built on Cloud 
federation enjoy more options for on-demand 
resource provisioning. Multiple Cloud services 
may back up each other for fault-tolerance. Or, 
with carefully arrangement, it may achieve bet-
ter performance/price ratio than single-vendor 
approaches do. In other words, Cloud federa-
tion brings new possibilities to Cloud elasticity. 
However, there are challenges to overcome. It 
is hard to implementing uniform platform layer 
incorporating Cloud services with distinct service 
models and user interfaces. The difference among 
underlying technologies is obstacle to interoper-
ability. Researchers just begin to tackle those 
problems. Yang (Yang X. et al., 2012) presented a 
new Cloud federation model for real time applica-
tions capable of on-demand resource provisioning 
across multiple Cloud vendors.

Live migration of VM plays an important 
role in Cloud elasticity. Current live migration 
technology, however, is not fully satisfactory. 
Remote Direct Memory Access (RDMA) infra-
structure was facilitated to speed up live migration 
(Huang et al., 2007), but it is not always seen in 
Cloud infrastructure other than those dedicated to 
scientific computing. MECOM (Jin et al., 2009) 
adopts compression algorithm to reduce the data 
transferred during live migration and consequently 
shorten its total time span. MDD (Zhang et al., 
2010) takes data de-duplication to achieve the 
similar effect. They actually trade CPU cycles and 
memory space for performance of live migration. 
Such optimizations are not adequate for migrating 
VMs away to offload a busy physical server. Post-
copy (Hines et al., 2009) approach is capable of 
migrating CPU load away as soon as possible, but 
exception of either side of migration could cause 
crash of the migrating VM. Moreover, applica-

tions in the migrating VM may experience worse 
performance degradation than that in pre-copy 
approach. Shrinker (Riteau, Morin, Priol, 2010) 
has suggested a real-time fingerprint system for 
memory pages and DHT-based content sharing 
system to enable live migration over Wide-Area 
Network. But they didn’t solve the hash collision 
problem. Since there may be no one live migration 
technology fit for all purpose, we suggest a hybrid 
solution. Various optimizations for live migra-
tion may be combined in a toolkit. It’s up to the 
resource scheduler which optimization(s) to use.

Latest development of virtualization technol-
ogy arms Cloud infrastructure with new weapons 
for Cloud elasticity. Snow Flock (Lagar-Cavilla 
et al., 2009) enables “fork” operation for virtual 
machines. Fast VM start-up (Zhu, Jiang, and Xiao, 
2011) can start up a VM in milliseconds. Both of 
them can be used to support fast deployment for 
flash crowd. Partial migration technology (Bila 
et al, 2012) extends the post-copy approach to 
temporarily migrate away the active states of an 
idle virtual machine, so that the physical server 
has more chances to sleep and therefore save 
power. New I/O devices are virtualized at hardware 
level so that each virtual machine could enjoy 
high performance with pass-through devices. 
Live migration with pass-through device is not 
a trifle because of the difficulty of migrating 
hardware-specific device states. CompSC (Pan et 
al, 2012), however, has already added support for 
pass-through NIC to live migration. Incorporat-
ing those technologies into existing Cloud is still 
open to researchers.

CONCLUSION

Cloud elasticity is an appealing characteristic of 
Cloud infrastructure. It involves scaling up and 
down resource allocation according to the real time 
requirements of applications. In face of resource 
shortage, an elastic system is able to fairly allocate 
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resources. Elasticity is implemented in different 
levels of the Cloud architecture.

Hypervisor is responsible for allocating local 
resources to the VMs. CPU scheduling algorithm 
is similar to the process scheduling in the OS. 
Proportional application performance can be en-
forced by adjusting scheduling weights of VMs. 
Ballooning technology realizes memory alloca-
tion by inflating or deflating the balloon process 
residing in each guest OS, while TMEM maintains 
a public memory pool for page cache and swap. 
Scheduling I/O resources is a hot research field, 
where many problems remain to be solved.

As a global resource scheduling mechanism, 
live migration has its pros and cons. Its advantage is 
application neutral, but the overhead of migration 
should be considered carefully. By modeling the 
scheduling problem with the bin packing problem, 
we can exploit the abundant existing algorithms in 
that well studied field. We introduce a practical, 
online bin-packing scheduling algorithm. Then 
we introduced the skewness algorithm that avoids 
uneven utilization of different kind of resources of 
a physical server. Both of them are incorporated 
in a real Cloud system.

With internal information of applications, 
on-demand resource provision technologies at 
application level can perform a more precise provi-
sion. Taking web application as an example, we 
introduced several elasticity technologies.

Load prediction has significant impacts on 
resource allocation. Prediction error may invoke 
under-provisioning or over-provisioning with 
unpleasant implications. We introduced two 
categories of prediction algorithms that widely 
adopted. EWMA based algorithms are simpler, 
while AR models are more precise.

We finally pointed out future directions of 
technologies in this field.
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KEY TERMS AND DEFINITIONS

Cloud User: A cloud user refers to the person 
who use the service provided by a cloud system. 
According to the type of cloud service, it may 
be an application user, a software developer or a 
system architect.

Live Migration: A running virtual machine 
can be migrated from one physical machine to 
another without its application being interrupted. 
That technology is called live migration.

Proportional Resource Allocation: With a 
proportional resource allocation strategy, when 
contention encountered, each entity should get 
a share of resource proportional to its presetting 
weights, no matter how greedy the other entities 
are.

Resource Provisioning: Resource provision-
ing refers to the process of assembling computing 
resources like CPU, memory, disk and network 
I/O to serve application computation.

Resource Scheduler: A resource scheduler 
refers to the entity that performs resource sched-
uling task.

Scheduling Algorithm: Scheduling algorithm 
refers to the detailed process of the policy for 
resource scheduling.

Service Level Agreement (SLA): SLA is 
the quantized specification of the service a cloud 
provider promises.IG
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