
301

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-4666-2854-0.ch013

1. INTRODUCTION

Cloud elasticity refers to the ability of Cloud
infrastructure to dynamically make resource
provision for Internet applications and services,
according to their real time requirements. That
feature of Cloud Computing has several appealing
implications. It eliminates the dilemma of planning
IT infrastructures for Cloud users, where under-

provisioning compromises service quality while
over-provisioning wastes investment as well as
electricity. It offers virtually infinite resource to
Cloud users (Armbrust et al., 2009). It has also
made the desirable “pay as you go” accounting
model possible.

Planning new IT infrastructure for growing
demands of Internet applications is complicated.
It calls for successful prediction on how appli-

Weijia Song
Peking University, China

Zhen Xiao
Peking University, China

An Infrastructure-
as-a-Service Cloud:

On-Demand Resource Provisioning

ABSTRACT

Cloud computing allows business customers to elastically scale up and down their resource usage based
on needs. This feature eliminates the dilemma of planning IT infrastructures for Cloud users, where
under-provisioning compromises service quality while over-provisioning wastes investment as well as
electricity. It offers virtually infinite resource. It also made the desirable “pay as you go” accounting
model possible. The above touted gains in the Cloud model come from on-demand resource provisioning
technology. In this chapter, the authors elaborate on such technologies incorporated in a real IaaS system
to exemplify how Cloud elasticity is implemented. It involves the resource provisioning technologies in
hypervisor, Virtual Machine (VM) migration scheduler and VM replication. The authors also investigate
the load prediction algorithm for its significant impacts on resource allocation.

IG
I G

LO
BAL PROOF

302

An Infrastructure-as-a-Service Cloud

cation loadings would change in the future and
is particularly hard for Start-Ups since market
response is not clear in advance. When it knocks
against flash-crowd, self-maintained servers may
fail to satisfy the need of surging requests. On the
contrary, over provisioning caused by optimistic
prediction leaves the server under-utilized, and
consequently causes waste in energy and excess
investment in fixed asset. In Cloud environment,
however, application maintainers need not worry
about such problems since the Cloud resource
allocation automatically scales up and down on
changing load, and the users are billed accordingly.

Sometimes, particularly in data mining ap-
plications, a user may require a large number
of servers for a short period. It is hard to satisfy
such requirement if it were not for Cloud comput-
ing. A successful example is, “The Washington
Post uses Amazon EC2 to turn Hillary Clinton’s
White House schedule—17,481 non-searchable
PDF pages—into a searchable database within 24
hours.” (“AWS Case Study: Washington Post,”
n.d.). In colleges, researchers may have similar
requirements when processing huge amount of
experiment data.

There are different approaches to Cloud elastic-
ity depending on how the Cloud infrastructure is
constructed and what types of applications run-
ning over it. In the next sections, we are going
to introduce some popular technologies adopted
nowadays Cloud Services. Then we start from
basic components of a Cloud infrastructure to
explain our own work that handling Cloud elas-
ticity in a real IaaS service. In the end, we will
point out, in our perspective, the trend of Cloud
elastic technologies.

2. BACKGROUND

Traditionally, Cloud services are categorized into
Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS).
IaaS provides virtual machines to Cloud users.

IaaS users are responsible for application develop-
ment, deployment and management. PaaS take the
burden of application management by providing
development tools and deployment platform. SaaS
model is actually “old wine in new bottles” for
conventional Internet applications.

In an IaaS system, virtual machines are
generally overcommitted to physical servers to
maximize profit from hardware investment and
cut down power budget. Cloud elasticity in that
environment addresses the challenge of resource
provisioning for dynamic load of virtual machines.
For example, if physical server cannot satisfy the
resource requirements of its virtual machines,
some of them are going to be migrated to other
servers so that application performance is assured.

It is hard for application developers to predict
the user load. In PaaS systems, user applications are
managed by Cloud infrastructure to relive develop-
ers of the difficult of deployment, so that they can
concentrate on application function. Generally, the
applications deployed in PaaS are developed by
designated program language, development tool
and libraries and encapsulated in managed execu-
tion engines. An execution engine is a sandbox
allocated with a share of CPU resource. Execution
engines have uniform management interface for
life cycle control and performance monitoring.
Elasticity mechanism dynamically adjusts the
number of execution engines belonging to an
application to suit its load.

The situation in SaaS is similar to that in PaaS.
A SaaS service could be built upon a PaaS ser-
vice to indirectly utilize its elasticity mechanism.
Some large SaaS services choose to implement
dedicated elasticity mechanism for application
specific optimizations (Chen et al., 2008) (Chase
et al., 2001). Here we just talk about stateless
computing resource. The discussion of data storage
technologies like Google File System (Ghemawat,
Gobioff, and Leung, 2003) and Big Table (Chang
et al., 2008) belongs to another dedicated field out
of scope of this chapter.

IG
I G

LO
BAL PROOF

303

An Infrastructure-as-a-Service Cloud

This chapter focuses on the Cloud elasticity
technologies adopted in IaaS systems. We are go-
ing to illustrate the dynamic resource provisioning
mechanisms and policies in the PKU Cloud, a real
IaaS system that supporting research in Computer
Department of Peking University.

The PKU Cloud adopts typical structure of
Cloud infrastructure depicted in Figure 1. Its fun-
damental part is a virtualized data center hosting
several tens of blade servers. The Xen hypervisor
virtualize each physical server into several virtual
machines. Based on the hypervisors and the virtual
machines, the PKU Cloud incorporates peripheral
services such as storage, security, and management
to provide an integrated solution. Although inno-
vative network structures like FatTree (Al-Fares
et al., 2008) and VL2(Greenberg et al., 2009) are
emerging, conventional tree structure is the most
widely adopted one for data center network. The
conventional tree structured data center network
is composed of a router, several core switches,
and many top of rack switches. In practice, a
data center generally has more than one router
and core switches for fail-safe or performance
purpose. Data center network connect servers to
each other and to the outside Internet. Storage
Area Network (SAN) connects the servers with
back end centralized storage devices.

The PKU Cloud implements elasticity at three
levels. Consider a scenario where the load of an
application keeps rising. Virtual machines con-
taining the application components begin asking
for more CPU and memory from the hypervisor
layer. Idle resources of the physical servers are
assembled and put into use by the hypervisors.
Most of the time, virtual machines are not fully
loaded. Physical servers usually have some re-
source reservation for transient load pulse, even
though they are sometimes over-committed.
However, the application load keeps going up.
Resource reservation in some physical servers is
consequently exhausted. In this case, hypervisors
has to balance resource allocation among the
virtual machines sharing the same physical

server to avoid unacceptable degradation of Qual-
ity of Service (QoS). In the next section, we are
going to discuss in details the resource scheduling
technologies at the hypervisor level.

Live migration (Clark et al., 2005) allows a
virtual machine to be migrated from one physical
server to another, without interrupting the appli-
cation running in that virtual machine. Ideally,
layout of virtual machines on physical servers
can be dynamically adjusted with live migration
to a state that Service Level Agreement (SLA) is
always satisfied as long as there are idle resources
available in any physical server in the system. This
feature is appealing in case of flash crowd. When
application load may get high enough that no mat-
ter how the hypervisor allocates the resources to
virtual machines, there are always some applica-
tions that cannot get enough resource to achieve
acceptable performance regarding to SLA. Live
migration, however, incurs network overhead be-
cause it involves transferring the memory image
along with other states of a virtual machine from
one server to another. When network resource is
busy, using live migration may make the situa-
tion worse. In addition, migration may last for an
uncertain period of time depending on network
traffic; therefore it is unwise to incorporate migra-
tion for a transient overload. Due to the limitations
of live migration, the aforementioned ideal state
is hard to achieve. In the section “elasticity with
live migration”, we are going to elaborate on how
the PKU Cloud uses live migration for resource
provisioning.

Performance scalability with service replica-
tion has been adopted in web applications (Chase
et al., 2001) long before. Stateless tiers of an ap-
plication, like web front end and thinking logic
are replicated in case of flash crowd. An appli-
cation level switch is responsible for redirecting
incoming requests to the right place. In virtual-
ized environment, the mechanism stays the same
except that application tiers are encapsulated in
virtual machines. But the applications nowadays
are growing more and more complicated. On one

IG
I G

LO
BAL PROOF

304

An Infrastructure-as-a-Service Cloud

hand, they occupied large amount of memory even
in idle. On the other hand, the process of starting
or shutting down an application typically lasts too
long to react to flash crowd in time. In the section
“elasticity in Internet applications”, we address
those issues with the PKU Cloud approaches to
Cloud elasticity at the application level.

The nature of resource scheduling is to pro-
vision resources reasonably to applications in
the future. If the future load could be known
beforehand, an offline algorithm can calculate
an ideal resource scheduling solution so that all
application requirements are satisfied if possible
and that the performance of the Cloud infra-
structure is maximized. However, it is usually
impossible to know the load in advance. In this
case, prediction algorithm, making estimation
of a random variable according to its history and
other factors, helps understand the trend of how
the load would change overtime. Prediction is a
well-studied topic in fields such as stock market
prediction and weather forecasting. In the field
of Cloud computing, many research works and
systems have already incorporated that technol-
ogy. In section “load prediction”, we are going to
introduce two kinds of load prediction algorithm.

3 RESOURCE SCHEDULING
IN HYPERVISOR

Generally, physical servers are overcommitted by
virtual machines. For example, a CPU intensive
and a memory intensive virtual machine are put
together to share a server to improve utilization.
Combining virtual machines with alternate peak
time takes effect likewise. When load changes, the
hypervisor is responsible for adjusting resource
allocation among the virtual machines. Three types
of resources are usually considered: CPU, memory,
and I/O resource. We are going to look into the
each kind of resource respectively to understand
how elasticity is realized at the hypervisor level.
We assume you have basic knowledge of virtu-
alization in this chapter or you can refer to the
design of Xen hypervisor (Barham et al., 2003).

3.1 Virtual CPU Scheduler

In Operating System, process scheduling is a
well-explored area. OS processes are multiplexed
on CPU cores in an elastic time-division manner.
Process scheduler incorporates priority and time
slice for fair allocation of CPU time as well as

Figure 1. Architecture of a virtualized data center

IG
I G

LO
BAL PROOF

305

An Infrastructure-as-a-Service Cloud

maximum utilization. A process can use more
CPU time than its share as long as idle CPU
times are available. A greedy process, however,
is constrained to its fair share so that other pro-
cesses are not affected negatively. In a virtualized
environment, the mapping of OS processes to
physical CPU cores is indirect. Firstly, a process is
scheduled onto a Virtual CPU (VCPU) of its con-
taining virtual machine by the process scheduler
in the guest operating system. When the VCPU
acquires CPU time slice, the process is executed.
Scheduling VCPUs onto physical CPU cores is
performed by VCPU scheduler in the hypervisor.
VCPU scheduler and process scheduler have com-
mon objectives such as fairness and performance.

All physical servers in the PKU Cloud are
configured to use Credit (“Credit Based Sched-
uler”, 2007), the default VCPU scheduler of Xen
hypervisor. In Credit, each virtual machine is as-
sociated with two properties, a weight and a cap.
The weight tells the proportion of CPU time a
virtual machine should have relative to each other;
while cap tells the upper limit. We use a two-tuple
<weight, cap> to represent a virtual machine with
its weight and cap. Consider two virtual machines,
A <100, 80%> and B <100, 60%>, which share
a server. If the CPU load in both of them exceeds
50% of the capacity of the server, they get 50%
each. Otherwise, unused CPU time of one virtual
machine can be utilized by the other. For example,
A can get up to 80% if B uses only 10%, leaving
the other 10% CPU time unused. On the contrary,
B can get up to 60%.

3.2 Memory Allocation
among Virtual Machines

Memory resource is quite different from CPU
resource for its usage is almost independent of
application load. A sophisticated application may
require a large amount of memory even if the
load is low (Karve et al., 2006). The hypervisor
needs special measurement for memory require-

ment. This is important because allocating and
reclaiming memory among virtual machines in-
volves modifying the page table and invalidating
the Translation Lookaside Buffer (TLB) which
incurs overhead. Sometimes, for security reason,
a memory page should be flushed (i.e., zeroed
out) before being allocated. Otherwise, data of the
virtual machine that page belonged to is leaked
to the one getting it.

The PKU Cloud adopts Ballooning (Wald-
spurger, 2002) technology to share memory
between Virtual Machines on the same physical
server. When memory is scarce, for example, a new
virtual machine being created, unused memory
can be squeezed out of other virtual machines and
reallocated to the one where it is required. That is
achieved by a “balloon” process devised in each
guest OS. It is under the control of the hypervisor.
When the hypervisor squeezes memory from a
virtual machine, it sends a “deflate” request to the
balloon process in that virtual machine. Then, the
ballooning process requests specified amount of
memory from OS. On a successful operation, the
balloon process pins the memory it has acquired
(so that corresponding pages are never swapped
out), picks the corresponding page frames off the
page table and hands the frames to the hypervisor.
Inversely, when the hypervisor returns memory,
the balloon process executes an “inflate” operation.
It hooks those page frames to the page table again,
unpins the memory and frees it back to OS. The
memory is like air that flows from one balloon to
another. For this reason, the technology is called
“ballooning”. Although ballooning provides a
mechanism of sharing memory, it is a hard problem
to find out how much memory a virtual machine
requires. It is similar to the classical problem of
determining the size of the process working set.
The current solution in the PKU Cloud is Self-
ballooning (Magenheimer, 2008). It is a daemon
residing in Linux guest OS, periodically reading
the value of “Commited_AS” item in the “/proc/
meminfo” system file as a coarse estimation on

IG
I G

LO
BAL PROOF

306

An Infrastructure-as-a-Service Cloud

future memory usage. According to the estimation,
it actively adjusts the memory usage with the bal-
loon driver. That approach can be improved, since
we found by experiment that the estimation is too
simple to exclude aged page cache. VMware ESX
server adopts a random page sampling technique
(Waldspurger, 2002) to measure the working set
of a virtual machine: during each measurement
period, a random subset of pages in the VM’s
(pseudo) physical memory are invalidated by the
hypervisor so that a subsequent access will result
in a trap. This allows the hypervisor to collect
statistics on how much memory is being actively
used by the guest OS. The default sampling rate
in ESX is 100 random pages every 30 second.
Experiment result in that work showed a smooth
and tight track of the actual memory usage. In
another work (Wood et al., 2007), swap activities
are used as the signal of memory shortage. Once
abrupt increase of swap activities of a virtual ma-
chine is detected, memory is inflated by a step of
32 megabyte. In practice, that method is so lazy
that the application performance is compromised.

Transcendent Memory (TMEM) (Magen-
heimer, 2009) takes another approach. As we
know, page cache used to accelerate the file ac-
cess tends to eat up memory. While some virtual
machine is suffering from the memory shortage,
others may occupy a lot in the page cache for
infrequently used files. To avoid that unfairness,
TMEM maintains a shared memory pool in the
hypervisor for centralized management of page
cache. The pool is virtualized so that each virtual
machine can have one or more virtual pools for
convenience. A virtual pool can be ephemeral or
persistent. Data put into an ephemeral pool may
be forgotten because of memory shortage. But
the availability of data put into a persistent pool
is guaranteed. To use TMEM, the page cache and
swap implementation in guest OS are extended
with two operations, precache and preswap, re-
spectively. Before a clean page in the page cache
is reclaimed, its data is written to an ephemeral
pool. When the page is read next time, the OS

first tries to read it from the ephemeral pool. If
the read operation succeeds, which means the
data has fortunately survived, a time-consuming
disk I/O operation is saved. Since the precache
operation works like page cache without using
memory dedicated to a virtual machine, a virtual
machine only needs to occupy a small amount
of memory for OS kernel and application code.
Sometimes, a virtual machine needs to swap out
some pages. Before the data of a page is eventu-
ally swapped out to the disk, the OS tries to put
it to a persistent memory pool. If the operation
succeeds, data of that page is retrieved from the
pool the next time when it is accessed. Again, a
disk I/O operation is saved.

TMEM evades the difficulty of working set
measurement. But it is more complicated to
implement than ballooning. To the time of this
writing, TMEM has been implemented in the Xen
hypervisor. We plan to update Xen hypervisor in
PKU Cloud to support the TMEM.

3.3 Scheduling I/O Resources

Network and disk are two essential I/O resources
that are closely related to the application perfor-
mance. I/O virtualization involves the sharing of
a set of network interface cards (NIC) and the
disk of a physical server among virtual machines
running over it. Hypervisor is responsible for
creation of virtual devices exposed to the guest
OS and the multiplexing of real I/O devices. In
order to understand how I/O resource is scheduled
in a virtualized environment, we look into a typi-
cal implementation, the split driver model in the
Xen hypervisor.

There is a privileged virtual machine, called
domain 0, on the Xen hypervisor. It contains all
the drivers required to manipulate real devices
like gigabyte NICs or IDE disks. Common virtual
machines, called domain U, do not have such
drivers. They indirectly access the real devices
by a mechanism called the split driver model.
Each virtual device corresponds to a split driver

IG
I G

LO
BAL PROOF

307

An Infrastructure-as-a-Service Cloud

composed of a front-end and a back-end driver
in the domain U and the domain 0, respectively.
Both ends are tied together by Xen hypervisor’s
communication mechanism including shared
memory and event channel. The front-end driver
accepts requests from the OS in domain U, while
the back-end driver handed these requests to a
real driver. On receiving data, the back-end driver
will notify the front-end driver about new arrivals
in the shared memory. I/O resource Schedulers
stand between the back-end driver and the real
driver. They decide when and in which order the
requests are handled.

Although the PKU Cloud follow the traditional
I/O scheme and works fine so far, but the intricate
characteristics of I/O systems make fairness and
isolation quite difficult. Here we name a few to
show the tip of the iceberg.

Accessing disk data involves slow mechanical
movements. It is hard to determine how long such
an operation will take since the associated head
position is unknown beforehand. Not to mention
Redundant Array of Independent Disks (RAID) or
hybrid storage systems composed of Solid-State
Drive (SSD) and traditional hard disk. Thereby
traditional disk I/O scheduling algorithms like
Completely Fair Queuing (CFQ) (Love, 2004) pur-
suing fairness in request numbers cannot achieve
good fairness and isolation. Gulati pointed out
that there is a tradeoff between performance and
fairness (Gulati et al. 2007). VIOS (Seelam and
Teller, 2007) improves by fairly allocating disk
time to virtual machines. AutoControl (Padala et
al., 2009) extends such fairness to application level.

A virtual disk may be an image file in the
file system, a logic unit in the iSCSI storage or
a disk partition on a local hard disk. But the I/O
scheduler in the guest OS is unaware of that detail.
It is generally optimized for a single exclusive
hard disk incorporating technics like anticipatory
reading and reordering requests for a shorter head
movement. At the hypervisor level, however,
the I/O requests from different guest OSes are
scheduled again. Mutual interference of the two

schedulers may result in an awkward situation.
In the XenServer, a commercial version of Xen
hypervisor, the noop scheduler using simple FIFO
algorithm, is adopted by default at the hypervisor
level. Another possibility is to leave that task to
the storage system.

Scheduling network resource seems simpler
than scheduling disk I/O if only bandwidth of NICs
is taken into account. Sometimes, however, the
links among switches and routers in data center
network may become critical resources due to a
hot application or malware. Fairness and isolation
at this level is quite difficult. Seawall (Shieh et
al., 2011) introduces a sophisticated approach to
this problem. It is an end-to-end solution without
a central coordinator. Only modification to the
hypervisor software is required.

I/O virtualization is a fast changing field. New
technologies keep emerging. Our discussion is
however limited due to the lack of space.

4 CLOUD ELASTICITY
WITH LIVE MIGRATION

Resource scheduling at the hypervisor level real-
izes limited elasticity owing to the fixed capacity
of a physical server. Migration of virtual machines
breaks up the limitation by utilizing resources
from other servers. Figure 2 sketches how it
works. Consider a data center with three physical
servers: A, B, and C. At the beginning, as shown
in the upper left part of Figure 2, server A and
B are running five virtual machines each. They
are reasonably loaded (tagged with “WARM”).
Server C is standing by to save electricity. When
workload grows, server A cannot afford the ag-
gregate resource requirements of its five virtual
machines (tagged with “HOT”). We say that server
A is a hotspot. A virtual machine scheduler (not
shown in Figure 2) detects the hotspot and thereby
initiates a migration schedule that migrating two
virtual machines from server A to C. After the
migration finishes, as shown in the lower right

IG
I G

LO
BAL PROOF

308

An Infrastructure-as-a-Service Cloud

part of Figure 2, the hotspot is resolved. Resource
demands of applications are consequently satis-
fied. Assume that the workload begins to shrink
now. Resource utilization of server A and C
drops dramatically. The utilization of server A
and C (tagged with “COLD”) is too low to be
power efficiently. The virtual machine scheduler
therefore initiates another migration schedule
that dynamically consolidates virtual machines
on under-utilized servers together. The released
server C again enters low power state. Now, the
servers return to their original states.

Some important details are left out in the above
scenario for abstraction. As we mentioned in the
BACKGROUND section, live migration incurs
network overhead and takes some time. Only
persistent change in resource demands deserves
migration. The virtual machine scheduler (VM
scheduler) incorporates load prediction technics,
which we will describe later, to differentiate
stable workload change from transient fluctuation.
Depending on the estimation of future workload,
it needs to decide which virtual machine to migrate
away and to where. It will be demonstrated later
that solving the problem is an NP-hard problem.
Only heuristics algorithms are pragmatic. The
rest of the section will first illustrate the widely
adopted architecture for VM schedulers and then
focus on the migration policies. For convenience,

the acronym VM and PM are used in the follow-
ing text to denote a virtual machine and a physi-
cal server/machine respectively.

The VM scheduler of the PKU Cloud is shown
in Figure 3. This centralized architecture is also
adopted in other VM schedulers such as Sandipiper
(Wood et al., 2007), Harmony (Singh, Korupolu,
and Mohapatra, 2008) and Usher (McNett et al.,
2007). Each PM runs a hypervisor with a Node
Manager. The node manager collects from the
hypervisor the real-time usage statistics of re-
sources for each virtual machine on that PM. The
statistics collected at each PM are forwarded to
the VM scheduler. The VM Scheduler is invoked
periodically and receives from the Node Manager
the resource demand history of VMs, the capac-
ity and the load history of PMs, and the current
layout of VMs on PMs.

The VM scheduler has several components.
The Load Predictor predicts the future resource
demands of VMs and the future load of PMs based
on past statistics. The load of a PM is computed
by aggregating the resource usage of its VMs.
The Node Manager at each node first attempts to
satisfy the new demands locally by the resource
allocation mechanism in the hypervisor. The
Scheduling Algorithm module detects if the re-
source utilization of any PM is above the hot
threshold (i.e., a hot spot). Then it decides on

Figure 2. Elasticity with live migration

IG
I G

LO
BAL PROOF

309

An Infrastructure-as-a-Service Cloud

which VMs running on hot spots should be mi-
grated away to reduce their load. It also identifies
under-utilized PMs and decides whether they
should be released by migrating their VMs away
so that they can be turned off to save energy. The
Scheduling Algorithm finally compiles a migra-
tion list of VMs and passes it to the Dispatcher,
who in turn contacts the Node Manager for the
execution of the planned migration.

Many algorithms can be incorporated in this
framework. One category borrows solutions from
well-studied theoretic models (Bobroff, Kochut,
and Beaty, 2007) (Xu and Li, 2011). The other
use pragmatic heuristics which model expected
scheduling objectives (Wood et al., 2007) (Singh,
Korupolu, and Mohapatra, 2008). The PKU Cloud
incorporated two algorithms. The online bin-pack-
ing algorithm belongs to the first category, while
the Skewness algorithm belongs to the latter one.

4.1 Online Bin-Packing Algorithm

The classical bin packing problem consists of
packing a series of items with sizes in the interval
(0, 1] into a minimum number of bins with capac-
ity one. We can model VM scheduling as the bin
packing problem where each PM is a bin and each
VM is an item to be packed. Resource provision
is implicitly assured by the rule that the size of
items (resource requirement) is less than the bin

size (resource allocation), while over provision-
ing is avoid by the objective of using a minimum
number of bins. We assume that all PMs are ho-
mogeneous with unit capacity. We normalize the
resource demands of VMs to be a fraction of that
capacity. For example, if a VM requires 20% of
the physical memory of the underlying PM, then
it corresponds to an item with size 0.2. If other
resource types such as CPU and I/O are consid-
ered, the size of an item can be represented by a
vector whose elements are normalized demands
of the VM corresponding to the resource types.
That variation is called vector bin-packing.

The bin-packing problem is well-known to be
NP-hard. Although it has been studied extensively
in the literature, pure theoretic solutions do not
work well in data center environments. Offline
algorithms can achieve a performance very close
to the optimal algorithm, but they assume the
entire sequence of items to be packed is known in
advance (Garey and Johnson, 1985). More intri-
cately, in data center environment, the size of an
item is changing. Rerunning an offline algorithm
in each round of scheduling, however, incurs too
many migrations to be practical. Online algorithms
that pack incoming items incrementally make no
attempt to minimize the movements of already
packed items because the overhead of migration
is hard to model in the framework. When applied
to VM scheduling, they need modifications to
constrain the frequency of migration.

We have designed a practical online bin-
packing algorithm (Xiao et al., 2010) that applied
to an IaaS Cloud service which supports over
200 people in a lab of Peking University. We
get this core algorithm by extending an existing
one-dimensional online bin-packing algorithm
(Gambosi, Postiglione, and Talamo, 2000) with the
approximation ratio as low as 3/2, which represents
a quite good performance for an online algorithm.
In the original algorithm, items are categorized
into four types: Tiny (T), Small (S), Large (L),
Big (B) items. Item size of the four types falls in

Figure 3. Architecture of a VM Scheduler

IG
I G

LO
BAL PROOF

310

An Infrastructure-as-a-Service Cloud

intervals (0, 1/3], (1/3, 1/2], (1/2, 2/3], (2/3, 1],
respectively. There are seven combinations of
items in a bin:

•	 A B-bin has only one B-item.
•	 An L-bin has only one L item.
•	 An LT-bin has only one L-item and a cer-

tain number of T-items.
•	 An S-bin has only one S-item.
•	 An SS-bin has only two S-items.
•	 An LS-bin has only one S-item and one

L-item.
•	 A T-bin has only a certain number of

T-items. It is called unfilled if the available
space is no less than 1/3. Otherwise, it is
called filled.

On arrival of a new item, an insert operation
is executed that keeps the following three rules
for bin usage:

•	 At any time, only six types of bins: B-bin,
L-bin, LT-bin, S-bin, SS-bin, T-bin are al-
lowed in the system.

•	 At any time, if there exists a T-bin, then
there is no L-bin, and the available space
in any LT-bin is less than 1/3.

•	 At any time, there are at most one S-bin
and at most one unfilled T-bin.

It can be proved that based on the above
rules, the approximation ratio of this algorithm
is bounded by 3/2. The proof is skipped due to
lack of space.

However, the original algorithm cannot handle
size changing of an item. We extend it by adding
a change operation to handle the situation where
item type changes and the above rules are violated.
It has been proved that a change operation invokes
no more than 7 movements (migrations) and an
insert operation no more than 3. This property
effectively constrains the number of migrations.

We also extend it to multi-dimensional by
breaking down items according to their largest

dimensions. The approximation ratio is bounded
by 3/2*d, where d is the number of dimension
under consideration. The worst case is when each
item has a different dominating dimension. For
example, when d = 3, the items (1, 0, 0), (0, 1, 0),
and (0, 0, 1) can be packed into a single bin under
the optimal algorithm, but need three bins in this
one. This ratio is rather unimpressive at a first
glance. But there are not that many dominating
dimensions in practice. Most practical systems
consider only one or two types of resources (e.g.,
CPU and memory) in their allocation decision.

We used several optimizations when applying
this algorithm to a real environment. The size of
each bin is intentionally shrunk a little compared
to the real capacity of the PM. The reserved capac-
ity helps avoid SLA violation in face of transient
load fluctuation. Though we assume that PMs are
homogeneous, a practical data center generally
contains different types of servers. This problem
can be solved by grouping identical servers to-
gether and running a VM scheduler for each group.
Sometimes the whole system under the manage-
ment of the VM scheduler may be overloaded.
In contrast to the assumption of infinite bins, the
reality is, bins are used up. To solve this problem,
the capacity of bins can be magnified by a certain
percentage until a solution is found. That technic
makes sure that all PMs are evenly overloaded to
avoid any application is unfairly treated.

4.2 The Skewness Algorithm

Bin-packing based algorithms are aggressive in
packing VMs. Therefore load change can easily
incur migrations. In other words, it trades stabil-
ity and performance for using a fewer number
of active PMs. In practice, however, the loss of
QoS is much severer than the waste of electricity
to a Cloud provider. The pragmatic algorithms
are more conservative. They prefer performance
to green computing. Many of them even do not
perform green computing (Wood et al., 2007)
(Singh, Korupolu, and Mohapatra, 2008).

IG
I G

LO
BAL PROOF

311

An Infrastructure-as-a-Service Cloud

In favor of performance and stability, we de-
signed a pragmatic algorithm, skewness (Xiao,
Song, and Chen, 2011), into the aforementioned
Cloud system. It is inspired by the fact that if a
PM runs too many memory-intensive VMs with
light CPU load, much CPU resources will be
wasted because it does not have enough memory
for an extra VM. We introduce the concept of
skewness to qualify the unevenness in the utiliza-
tion of multiple resources on a server. Let n be
the number of resources and ri be the utilization
of the i-th resource. The resource skewness of a
server p is defined as

skewness p
r

r
i

i

n

() () ,= −
=
∑ 1 2

1

where r is the average utilization of all resources
for server p. In practice, not all types of resourc-
es are performance critical and hence only bottle-
neck resources are considered in the above cal-
culation.

We use several adjustable thresholds that
control tradeoff between performance and green
computing. The “hot threshold” defines the ac-
ceptable upper limit of resource utilization. We
define a server as a hot spot if the utilization of
any of its resources is above the hot threshold.
We define the temperature of a hot spot p as the
square sum of its resource utilization beyond the
hot threshold:

temperature p
tr r

r R

() ,()= −∑
∈

2

where R is the set of overloaded resources in
server p and rt is the hot threshold for resource r.
(Note that only overloaded resources are consid-
ered in the calculation.) The temperature of a hot
spot reflects its degree of overload. If a server is
not a hot spot, its temperature is zero. The “cold
threshold” denotes the acceptable lower limit of
resource utilization. A server whose utilization of
all resources is under the cold threshold is defined

as a cold spot. The “green computing” threshold
defines the utilization level of all active PMs, under
which the system is considered power-inefficient
therefore green computing operations get involved.
Finally, the “warm threshold” defines the ideal
level of resource utilization that is sufficiently
high to justify having the server running but not
so high as to risk becoming a hot spot in the face
of temporary fluctuation of application resource
demands.

For each scheduling round, the skewness takes
two steps, hot spot mitigation and green computing,
to calculate a migration list. In hot spot mitiga-
tion, we try to solve all hot spots in descending
order of temperature. For each hot spot, we try to
migrate away the VM that can reduce the server’s
temperature the most. In those servers that can
accommodate the VM without becoming a hot
spot, we choose a server with most skewness
reduction by accepting this VM as the migration
destination. This does not necessarily eliminate the
hot spot, but at least reduces its temperature. Hot
spot mitigation step is finished after all hot spot
are processed. If the overall resource utilization of
active servers is lower than the green computing
threshold, a green computing step is invoked. In
the green computing step, we try to solve cold
spots in ascending order of the memory utiliza-
tion, which representing the efforts taken to solve
a cold spot. To resolve a cold spot, all of its VMs
need to be migrated away. The destination of a
VM is decided in a way similar to that in the hot
spot mitigation, but its resource utilization should
be below the warm threshold after accepting the
VM. We also restrict the number of cold spots that
can be eliminated in each run of the algorithm
to be no more than a certain percentage, for ex-
ample 5%, of active servers in the system. Those
arrangements are to avoid over consolidation that
may incur hot spots later. The movements gener-
ated in both steps above are then consolidated so
that each VM is moved at most once to its final
destination. For example, hot spot mitigation may
dictate a VM to move from PM A to PM B, while

IG
I G

LO
BAL PROOF

312

An Infrastructure-as-a-Service Cloud

green computing dictates it to move from PM B to
PM C. In the actual execution, the VM is moved
from A to C directly.

With lower hot spot threshold, the skewness
algorithm reacts earlier to resource shortage by
provisioning more resources. Lower cold threshold
excludes more servers with relatively low load
from being recycled. Lower green computing
threshold postpone the green computing operation
until the overall load decreases more. Both effects
make the skewness algorithm more conservative
when performing green computing. It is up to the
Cloud provider who decides its tradeoff between
performance and green computing. Generally
speaking, we recommend low thresholds if ap-
plications with unstable workload dominate in the
system, because more thrashing workload calls for
more conservative resource reservation to absorb
transient fluctuation hence SLA is assured.

4.3 Performance of the
Two Algorithms

We evaluated both algorithms by simulation to
understand their performance. We collected load
traces from a wide range of real applications,
including Web InfoMall, one of the largest web
archive in China, RealCourse, a large scale online
learning system that spread over 13 major cities,
and Amazing Store, a large P2P storage system.
We also collected traces from a DNS server and
a mail server for Peking University. Traces are
segmented in a per-day granularity. We use ran-
dom sampling and linear combination to generate
workloads at required scales.

Both algorithms are evaluated in four aspects:
effect of load balancing, effect of green computing,

stability, and decision time. We use the number
of hot spots to quantify the effect of load balanc-
ing. Small number of hot spots represents good
effect of load balancing. We model the effect of
green computing as the number of active physical
machines (APM) throughout the evaluation. Less
active physical machines mean more efficient
usage of power. The stability of an algorithm
is represented by the number of live migration.
We define decision time as time required for an
algorithm to calculate a scheduling plan in each
scheduling round. In practice, decision time needs
to be short enough that the system load distribution
doesn’t change significantly when a scheduling
plan is calculated.

The numbers in Table 1 are average numbers
of hot spots in each round just before scheduling.
With bin-packing algorithm, the number of hot
spots is almost five times as many as that with
Skewness algorithm. The bin-packing algorithm
tends to maximize the utilization of resource,
therefore it generally pack the APMs tighter than
Skewness does. Consequently, with bin-packing
algorithm, a hot spot is easy to be triggered due to
load fluctuation. Unlike bin-packing, the Skewness
maintains each active physical machine reasonably
loaded so that transient load fluctuation could be
absorbed without cause hot spots.The Skewness
algorithm actually trade power consumption for
performance. As show in Figure 4, we can see that,
Skewness uses 10 - 20% more physical servers
than bin-packing algorithm.

Table 2 shows the average numbers of migra-
tion in each round issued by both algorithms for
the same workload. The migration is much more
frequent with bin-packing than with Skewness
because bin-packing is more sensitive to load

Table 1. Average number of hot spots

Scale in number of VMs 200 400 600 800 1000 1200 1400

Bin-packing 0.60 1.44 2.39 3.41 4.17 4.91 6.37

Skewness 0.15 0.35 0.48 0.57 0.76 0.98 1.10

IG
I G

LO
BAL PROOF

313

An Infrastructure-as-a-Service Cloud

variance. In addition, the bin-packing algorithm
carefully rules the layout of VMs over PMs;
therefore it triggers more movement for adjustment
than the Skewness algorithm.

Previous analysis (Xiao et al, 2010) (Xiao,
Song, and Chen, 2011) reveals that the time com-
plexity of bin-packing and Skewness algorithm
are O(log(n)) and O(n2) respectively, where n is
the number of VMs. Experimental results shown
in Table 3 perfectly conform to the analysis. The
decision time of Skewness is more than one sec-
ond at a scale of 1400 VMs. In a system with
10,000 VMs it is expected to grow to one minute.
The decision time and migration time together
would exceed scheduling interval. In practice,
however, that is not problematic because the
scheduling interval is much longer than one min-
ute for high stability. In addition, Servers in big
data centers are generally grouped into smaller
resource pool so that the scale is manageable.

5 CLOUD ELASTICITY IN INTERNET
APPLICATIONS

Sometimes even if each virtual machine of an
application occupied a dedicated physical server,
the application load still asks for more resources.
In such a situation, resource provisioning with

local resource adjustment or migration do not
work anymore because those mechanisms are
unaware of what applications are running in vir-
tual machines. Many commercial platforms, e.g.
Google App Engine, are capable of automatically
replicating application instance for surging load.
This section focused on the solutions adopted by
the PKU Cloud for Web applications.

Figure 5 depicts the common architecture of a
web application. The front end switch is typically
a Layer 7 switch which parses application level
information in Web requests and forwards them
to the corresponding applications. The switch
sometimes runs in a redundant pair for fault toler-
ance. In the PKU Cloud, the L7 Switch is running
on a dedicated physical server, and application
components are encapsulated in virtual machines.
It is important that the application components
are stateless so that they can be replicated safely.
The elasticity of storage system belongs to another
research domain out of the scope of this chapter.
This section focused on the resource provisioning
problem for the application tier.

Generally, a resource scheduler is responsible
for the resource allocation. It monitors the load
of each application as well as the resource utiliza-
tion statistics of physical servers. Based on the
data it collects and layout of the applications over
physical servers, it calculates a new resource al-

Figure 4. Number of active PMs

IG
I G

LO
BAL PROOF

314

An Infrastructure-as-a-Service Cloud

location strategy that is better than the current
one. The criteria for a “good” strategy depend on
the particular system. The strategy, however, are
commonly composed of two parts: the layout of
applications’ replica on physical servers and the
request rates each replica accepts. A minor adjust-
ment involves improving the dispatch policy of
L7 switch. A major adjustment asks for starting/
stopping a replica or even starting/stopping a
physical server.

5.1 Resource Allocation in MUSE

In MUSE (Chase et al., 2001), all applications are
replicated on each server. Therefore all servers
in the data center form a unified resource pool.
Allocating resource to an application means in-
creasing the number of requests processed, while
reclaiming resource from an application means
reducing the number of requests processed. The
convenience of such settings is that once an adjust-
ment is enforced, it takes effect instantly.

The MUSE system allows each application to
bid for its requests, for example, one cent for each
request below 1,000 per minute and half a cent for
each request above 1,000 per minute. Generally,
the application would bid lower when its through-
put is higher. It models the throughput as a linear
function of CPU utilization, whose parameters are
calculated from application performance history.
Hence the energy cost of processing a request can

be estimated on CPU utilization. By subtract the
energy cost from the price an application can af-
ford, the resource scheduler can get the profit by
processing each request. The resource scheduler
is invoked periodically or by some predefined
states such as the occurrence of hot spots. In
each round the resources allocations are adjusted
in four steps to maximize the total profit. First,
the resource with negative return is reclaimed.
Then the idle resources, as long as available,
are allocated to profitable applications. For each
overloaded server, resource allocated to the least
profitable applications is reclaimed to bring it
back to a normal state. Finally, if there exists any
application x whose current bid is higher than
application y, then the resource occupied by ap-
plication y should be reallocated to application x
until equilibrium is reached.

This system was designed more than ten years
ago when the applications are relatively simple.
They do not need much memory so that a server
can run a replica of each application. Today, the ap-
plications have become much more sophisticated.
An application can easily occupy several Gigabytes
of memory. Moreover, starting and stopping an
application takes a long time. Therefore it is not
applicable for the present Cloud environment.

5.2 Starting and Stopping
Web Application

Some research works (Karve et al., 2006) (Tang
et al., 2007) address resource allocation for so-
phisticated web applications. They adopt stopping
a web application and then starting it on another
server as the approach to change the placement of
an application. To avoid too much overhead, they
manage to minimize the usage of placement. Par-
ticularly, the allocation algorithm given by Tang
et al. (2007) use network flow programming to
maximize the performance of the current place-
ment of web applications. Therefore the placement
operation is postponed until the placement cannot
satisfy the load anymore.

Figure 5. Architecture of a Web application

IG
I G

LO
BAL PROOF

315

An Infrastructure-as-a-Service Cloud

The resource allocation can benefit from the
VM stop/resume mechanism. VM stop/resume
is generally faster than starting/stopping an
application directly because they skipped the
time-consuming initialization process for large
software. The latest stop/resume technology
(Zhu, Jiang and Xiao, 2011) can accelerate such
an operation to several seconds.

The capacity of data centers in the real world
is finite. The illusion of infinite capacity in the
Cloud is provided through statistical multiplexing.
When a large number of applications experience
their peak demand around the same time, the
available resources in the Cloud can become
constrained and some of the demand may not
be satisfied. The amount of computing capacity
available to an application is limited by the place-
ment of its running instances on the servers. The
more instances an application has and the more
powerful the underlying servers are, the higher the
potential capacity for satisfying the application
demand. On the other hand, when the demand of
the applications is low, it is important to conserve
energy by reducing the number of servers used.

We develop a system that provides automatic
scaling for Internet applications in the PKU Cloud.
We model the problem as Class Constrained Bin
Packing (CCBP) where each server is a bin and
each class represents an application. In the tradi-
tional bin packing problem, a series of items of
different sizes need to be packed into a minimum

number of bins. The class constrained version
of this problem divides the items into classes or
colors. Each bin has capacity v and can accom-
modate items from at most c distinct classes. It is
“class constrained” because the class diversity of
items packed into the same bin is constrained. The
goal is to pack the items into a minimum number
of bins. The class constraint reflects the practi-
cal limit on the number of applications a server
can run simultaneously. For J2EE applications,
for example, memory is typically the bottleneck
resource. The capacity of a bin represents the
amount of resources available at a server for all
its applications. We develop an innovative auto
scaling algorithm that achieves good demand
satisfaction ratio and supports green computing.

6 LOAD PREDICTION

Load prediction has significant impacts on re-
source allocation. With an over-estimated load,
a scheduler may allocate more resources than
necessary. Therefore some of the resources are
wasted. On the contrary, with an under-estimated
load, the resource allocation may be insufficient.
Consequently, VOD user may complain the video
is not fluent and online game players may get angry
because they cannot control an avatar.

We found that two categories of load predic-
tion algorithm are widely adopted. One category

Table 2. Average number of migration

Scale in number of VMs 200 400 600 800 1000 1200 1400

Bin-packing 4.91 11.66 17.78 23.92 29.95 36.67 43.21

Skewness 0.19 0.36 0.57 0.73 0.90 1.06 1.25

Table 3. Decision time (milliseconds)

Scale in number of VMs 200 400 600 800 1000 1200 1400

Bin-packing 5.9 12.0 19.8 26.0 35.7 39.8 46.4

Skewness 38.8 115.5 233.5 349.9 529.9 674.6 1065.9

IG
I G

LO
BAL PROOF

316

An Infrastructure-as-a-Service Cloud

composed of variations of the Exponentially
Weighted Moving Average (EWMA) algorithm.
It is designed based on the assumption that the
future value of a random variable has strong
relation to its recent history. It has been used in
TCP for Round Trip Time (RTT) estimation for
decades. Algorithms of the other category adopt
the auto-regressive (AR) model. It requires more
computation than EMWA based algorithms. But it
can incorporate periodicity, which is hard to be uti-
lized in EWMA alternatives, for better precision.

6.1 EWMA Variations

With the original EWMA, load at time t is calcu-
lated byE t O t E t() () () (),= ∗ + − ∗ −α α1 1
0 1≤ ≤α , where E t() and O t()are the esti-
mated and the observed load at time t, respec-
tively. The parameter alpha reflects a tradeoff
between stability and responsiveness. The larger
the alpha is, the more agile the estimated load will
be (low gain). On the contrary, the smaller the
alpha is, the more stable the estimated load will
be (high gain).

The load prediction algorithm adopted in
MUSE (Chase et al., 2001) is a variation of
EWMA. It uses a high gain EWMA and a low
gain EWMA. If the latest observed load does not
deviate much from recent observations, the low
gain EWMA is used. Otherwise the high gain
EWMA is used. This eliminates occasionally noisy
observations. The output is further processed by
a hysteresis filter for stabilization. The working
set size estimator (Waldspurger, 2002) in ESX
server also incorporates a similar technique. It
uses three EWMAs with high, medium and low
gain. The highest EWMA is selected as output
to avoid under estimation as much as possible.

We designed a “Fast Up and Slow Down”
(FUSD) predicting algorithm for the load predic-
tor in the VM Scheduler of the PKU Cloud. It
is worth noticing that EWMA does not capture
the rising trends of resource usage. For example,
when we see a sequence of O(t) = 10; 20; 30;

and 40, it is reasonable to predict the next value
to be 50. Unfortunately, when alpha is between
0 and 1, the predicted value is always between
the historical value and the observed one. This
phenomenon easily cause under provisioning
when load is rising. To reflect the “acceleration”,
we take an innovative approach by setting alpha
to a negative value. On the other hand, when the
observed resource usage is going down, we want
to be conservative in reducing the estimation by
using a normal alpha. That’s why it is called “Fast
Up and Slow Down”. It dramatically reduces the
number of hot spots and live migration for Skew-
ness and bin-packing VM schedulers.

6.2 The AR Model

In some works, future load is modeled as a linear
function of several other factors such as the load
history, time, or resource allocation. The param-
eters can be calculated by training with data in the
past. Then the model can predict the future load.
This methodology is called Auto-Regression (AR),
represented as AR(p), where p is the number of
factors considered in this model. AR model works
well for periodical load.

The Sandpiper VM scheduler (Wood et al.,
2007) adopts AR(1). It models the load at time t
as a linear function of the average of n latest ob-
servations. It cannot utilize periodicity because it
is unaware if the application is periodical. In the
research on provisioning servers for connection-
intensive services (Chen et al., 2008), AR(n) is
used to predict the number and login rate of MSN
clients. The load is modeled as a linear function
of six independent variables, two of the most
recent observations and four of the observations
at the same time in last four weeks. The results
shows perfect fit between the predicted and the
observed load. This is because the load of MSN
clients presents perfect periodicity in its weekly
pattern. We speculate that most popular Internet
applications present such characteristics.

IG
I G

LO
BAL PROOF

317

An Infrastructure-as-a-Service Cloud

7. FUTURE RESEARCH DIRECTIONS

Cloud ecology involves more than one Cloud
vendor. The concept of Cloud federation is pro-
posed to architect software over multiple cloud
services (Celesti et al., 2010). Besides vendor
lock-in avoidance, applications built on Cloud
federation enjoy more options for on-demand
resource provisioning. Multiple Cloud services
may back up each other for fault-tolerance. Or,
with carefully arrangement, it may achieve bet-
ter performance/price ratio than single-vendor
approaches do. In other words, Cloud federa-
tion brings new possibilities to Cloud elasticity.
However, there are challenges to overcome. It
is hard to implementing uniform platform layer
incorporating Cloud services with distinct service
models and user interfaces. The difference among
underlying technologies is obstacle to interoper-
ability. Researchers just begin to tackle those
problems. Yang (Yang X. et al., 2012) presented a
new Cloud federation model for real time applica-
tions capable of on-demand resource provisioning
across multiple Cloud vendors.

Live migration of VM plays an important
role in Cloud elasticity. Current live migration
technology, however, is not fully satisfactory.
Remote Direct Memory Access (RDMA) infra-
structure was facilitated to speed up live migration
(Huang et al., 2007), but it is not always seen in
Cloud infrastructure other than those dedicated to
scientific computing. MECOM (Jin et al., 2009)
adopts compression algorithm to reduce the data
transferred during live migration and consequently
shorten its total time span. MDD (Zhang et al.,
2010) takes data de-duplication to achieve the
similar effect. They actually trade CPU cycles and
memory space for performance of live migration.
Such optimizations are not adequate for migrating
VMs away to offload a busy physical server. Post-
copy (Hines et al., 2009) approach is capable of
migrating CPU load away as soon as possible, but
exception of either side of migration could cause
crash of the migrating VM. Moreover, applica-

tions in the migrating VM may experience worse
performance degradation than that in pre-copy
approach. Shrinker (Riteau, Morin, Priol, 2010)
has suggested a real-time fingerprint system for
memory pages and DHT-based content sharing
system to enable live migration over Wide-Area
Network. But they didn’t solve the hash collision
problem. Since there may be no one live migration
technology fit for all purpose, we suggest a hybrid
solution. Various optimizations for live migra-
tion may be combined in a toolkit. It’s up to the
resource scheduler which optimization(s) to use.

Latest development of virtualization technol-
ogy arms Cloud infrastructure with new weapons
for Cloud elasticity. Snow Flock (Lagar-Cavilla
et al., 2009) enables “fork” operation for virtual
machines. Fast VM start-up (Zhu, Jiang, and Xiao,
2011) can start up a VM in milliseconds. Both of
them can be used to support fast deployment for
flash crowd. Partial migration technology (Bila
et al, 2012) extends the post-copy approach to
temporarily migrate away the active states of an
idle virtual machine, so that the physical server
has more chances to sleep and therefore save
power. New I/O devices are virtualized at hardware
level so that each virtual machine could enjoy
high performance with pass-through devices.
Live migration with pass-through device is not
a trifle because of the difficulty of migrating
hardware-specific device states. CompSC (Pan et
al, 2012), however, has already added support for
pass-through NIC to live migration. Incorporat-
ing those technologies into existing Cloud is still
open to researchers.

CONCLUSION

Cloud elasticity is an appealing characteristic of
Cloud infrastructure. It involves scaling up and
down resource allocation according to the real time
requirements of applications. In face of resource
shortage, an elastic system is able to fairly allocate

IG
I G

LO
BAL PROOF

318

An Infrastructure-as-a-Service Cloud

resources. Elasticity is implemented in different
levels of the Cloud architecture.

Hypervisor is responsible for allocating local
resources to the VMs. CPU scheduling algorithm
is similar to the process scheduling in the OS.
Proportional application performance can be en-
forced by adjusting scheduling weights of VMs.
Ballooning technology realizes memory alloca-
tion by inflating or deflating the balloon process
residing in each guest OS, while TMEM maintains
a public memory pool for page cache and swap.
Scheduling I/O resources is a hot research field,
where many problems remain to be solved.

As a global resource scheduling mechanism,
live migration has its pros and cons. Its advantage is
application neutral, but the overhead of migration
should be considered carefully. By modeling the
scheduling problem with the bin packing problem,
we can exploit the abundant existing algorithms in
that well studied field. We introduce a practical,
online bin-packing scheduling algorithm. Then
we introduced the skewness algorithm that avoids
uneven utilization of different kind of resources of
a physical server. Both of them are incorporated
in a real Cloud system.

With internal information of applications,
on-demand resource provision technologies at
application level can perform a more precise provi-
sion. Taking web application as an example, we
introduced several elasticity technologies.

Load prediction has significant impacts on
resource allocation. Prediction error may invoke
under-provisioning or over-provisioning with
unpleasant implications. We introduced two
categories of prediction algorithms that widely
adopted. EWMA based algorithms are simpler,
while AR models are more precise.

We finally pointed out future directions of
technologies in this field.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China Project 61170056.

REFERENCES

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008).
A scalable, commodity data center network ar-
chitecture. Proceedings of the ACM SIGCOMM
conference on Data communication, USA, (pp.
63-74). doi: 10.1145/1402958.1402967

Armbrust, M., Fox, A., & Griffith, R. (2009).
Above the clouds: A Berkeley view of cloud com-
puting. Berkeley: EECS Department, University
of California.

AWS Case Study: Washington Post. (n.d.). Re-
trieved from http://aws.amazon.com/solutions/
case-studies/washington-post/

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., & Ho, A. … Warfield, A. (2003).
Xen and the art of virtualization. Proceedings of
the Nineteenth ACM Symposium on Operating
Systems Principles, USA, (pp. 164-177). doi:
10.1145/945445.945462

Bila, N., Lara, E., Josi, K., Lagar-Cavilla, H.,
Hiltunen, M., & Satyanarayanan, M. (2012). Jet-
tison: Efficient idle desktop consolidation with
partial VM migration. Proceedings of the 7th
ACM European Conference on Computer Systems
(EuroSys ‘12), (pp. 1-14). Retrieved from http://
lagarcavilla.com/publications/BilaEurosys12.pdf

Bobroff, N., Kochut, A., & Beaty, K. (2007).
Dynamic placement of virtual machines for man-
aging SLA violations. International Symposium
on Integrated Network Management, Munich,
(pp. 119-128). doi: 10.1109/INM.2007.374776

IG
I G

LO
BAL PROOF

319

An Infrastructure-as-a-Service Cloud

Celesti, A., Tusa, F., Villari, M., & Puliafito, A.
(2010). How to enhance cloud architectures to
enable cross-federation. Proceedings of the IEEE
third International Conference on Cloud Comput-
ing (CLOUD), (pp. 337-345).

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., & Burrows, M. (2008). Bigtable:
A distributed storage system for structured data.
ACM Transactions on Computer Systems, 26(2),
1–26. doi:10.1145/1365815.1365816

Chase, J. S., Anderson, D. C., Thakar, P. N.,
Vahdat, A. M., & Doyle, R. P. (2001). Managing
energy and server resources in hosting centers.
Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles, (pp. 103-116).
doi: 10.1145/502034.502045

Chen, G., He, W., Liu, J., Nath, S., Rigas, L.,
Xiao, L., & Zhao, F. (2008). Energy-aware server
provisioning and load dispatching for connection-
intensive internet services. Proceedings of the
5th USENIX Symposium on Networked Systems
Design and Implementation, (pp. 337-350).

Clark, C., Fraser, K., Hand, S., Hansen, J. G., &
Jul, E. Limpach, C., … Warfield., A. (2005). Live
migration of virtual machines. Proceedings of the
2nd Conference on Symposium on Networked
Systems Design & Implementation, Vol. 2, (pp.
273-286).

Credit Based Scheduler. (2007). Retrieved from
http://wiki.xensource.com/xenwiki/CreditSched-
uler

Gambosi, G., Postiglione, A., & Talamo, M. (2000).
Algorithms for the relaxed online bin-packing
model. SIAM Journal on Computing, 5(30),
1532–1551. doi:10.1137/S0097539799180408

Garey, M. R., & Johnson, D. S. (1985). A 71/60 the-
orem for bin packing. Journal of Complexity, 1(1),
65–106. doi:10.1016/0885-064X(85)90022-6

Ghemawat, S., Gobioff, H., & Leung, S.
(2003). The Google file system. Proceedings
of the Nineteenth ACM Symposium on Op-
erating Systems Principles, (pp. 29-43). doi:
10.1145/945445.945450

Greenberg, A., Hamilton, J. R., Jain, N., Kandula,
S., Kim, C., & Lahiri, P. … Sengupta, S. (2009).
VL2: A scalable and flexible data center network.
Proceedings of the ACM SIGCOMM Confer-
ence on Data Communication, (pp. 51-62). doi:
10.1145/1592568.1592576

Gulati, A., Merchant, A., Uysal, M., Padala, P., &
Varman, P. (2009). Efficient and adaptive propor-
tional share I/O scheduling. ACM SIGMETRICS
Performance Evaluation Review, 37(2), 79–80.
doi:10.1145/1639562.1639595

Hines, M., & Gopalan, K. (2009). Post-copy based
live virtual machine migration using adaptive
pre-paging and dynamic self-ballooning. Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE ‘09), (pp. 51-60). doi:
10.1145/1508293.1508301

Huang, W., Gao, Q., Liu, J., & Panda, D. (2009).
High performance of virtual machine migration
with RDMA over modern interconnects. Proceed-
ings of the 2007 IEEE International Conference
on Cluster Computing, (pp. 11-20). doi: 10.1109/
CLUSTR.2007.4629212

Jin, H., Deng, L., Wu, S., Shi, X., & Pan, X.
(2009). Live virtual machine migration with
adaptive, memory compression. Proceedings
of the 2009 IEEE International Conference on
Cluster Computing, (pp. 11-20). doi: 10.1109/
CLUSTR.2009.5289170

Karve, A., Kimbrel, T., Pacifici, G., Spreitzer,
M., Steinder, M., Sviridenko, M., & Tantawi, A.
(2006). Dynamic placement for clustered web ap-
plications. Proceedings of the 15th International
Conference on World Wide Web, (pp. 595-604).
doi: 10.1145/1135777.1135865

IG
I G

LO
BAL PROOF

320

An Infrastructure-as-a-Service Cloud

Lagar-Cavilla, H., Whitney, J., Scannell, A.,
Patchin, P., Rumble, S., Lara, E., et al. (2009).
SnowFlock: Rapid virtual machine cloning for
cloud computing. Proceedings of the 4th ACM Eu-
ropean Conference on Computer Systems (EuroSys
‘09), (pp. 1-12). doi: 10.1145/1519065.1519067

Love, R. (2004). Kernel korner: I/O schedulers.
Linux Journal. Retrieved from http://www.linux-
journal.com/article/6931

Magenheimer, D. (2008, April). Add self-balloon-
ing to balloon driver [Electronic mailing list mes-
sage]. Retrieved from http://old-list-archives.xen.
org/archives/html/xen-devel/2008-04/msg00567.
html

Magenheimer, D. (2009). Transcendent memory
and Linux. Retrieved from http://oss.oracle.
com/projects/tmem/dist/documentation/papers/
tmemLS09.pdf

McNett, M., Gupta, D., Vahdat, A., & Voelker,
G. M. (2007). Usher: an extensible framework for
managing clusters of virtual machines. Proceed-
ings of the 21st Conference on Large Installation
System Administration Conference, (pp. 1-15).

Meisner, D., Gold, B. T., & Wenisch, T. F. (2009).
PowerNap: Eliminating server idle power. Pro-
ceedings of the 14th International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, (pp. 205-216).
doi: 10.1145/1508244.1508269

Miller, R. (2008). Microsoft: PUE of 1.22 for data
center containers. Retrieved from http://www.
datacenterknowledge.com/archives/2008/10/20/
microsoft-pue-of-122-for-data-center-containers/

Padala, P., Hou, K., Shin, K. G., Zhu, X., Uysal,
M., Wang, Z., et al. (2009). Automated control of
multiple virtualized resources. Proceedings of the
4th ACM European Conference on Computer Sys-
tems, (pp. 13-26). doi: 10.1145/1519065.1519068

Padala, P., Shin, K. G., Zhu, X., Uysal, M.,
Wang, Z., & Singhal, S. … Salem, K. (2007).
Adaptive control of virtualized resources in util-
ity computing environments. Proceedings of the
2nd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems, (pp. 289-302). doi:
10.1145/1272996.1273026

Pan, Z., Dong, Y., Chen, Y., Zhang, L., & Zhang,
Z. (2012).CompSC: Live migration with pass-
through devices. Proceedings of the 2012 ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, (pp. 1-12).

Riteau, P., Morin, C., & Priol, T. (2010). Shrinker:
Efficient wide-area live virtual machine migra-
tion using distributed content-based addressing.
Research Report:RR-7198, INRIA. Retrieved
from http://hal.inria.fr/docs/00/45/47/27/PDF/
RR-7198.pdf

Seelam, S. R., & Teller, P. J. (2007). Virtual
I/O scheduler: A scheduler of schedulers for
performance virtualization. Proceedings of
the 3rd International Conference on Virtual
Execution Environments, (pp. 105-115). doi:
10.1145/1254810.1254826

Shieh, A., Kandula, S., Greenberg, A., Kim, C., &
Saha, B. (2011). Sharing the data center network.
Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation,
(pp. 1-14). Retrieved from http://www.usenix.org/
events/nsdi11/tech/full_papers/Shieh.pdf

Singh, A., Korupolu, M., & Mohapatra, D. (2008).
Server-storage virtualization: integration and load
balancing in data centers. Proceedings of the
2008 ACM/IEEE conference on Supercomput-
ing, USA, 1-12.

Tang, C., Steinder, M., Spreitzer, M., & Pacifici, G.
(2007). A scalable application placement controller
for enterprise data centers. Proceedings of the 16th
International Conference on World Wide Web,
(pp. 331-340). doi: 10.1145/1242572.1242618

IG
I G

LO
BAL PROOF

321

An Infrastructure-as-a-Service Cloud

Waldspurger, C. A. (2002). Memory resource
management in VMware ESX server. Proceed-
ings of the 5th Symposium on Operating Systems
Design and implementation, (pp. 181-194). doi:
10.1145/844128.844146

Wood, T., Shenoy, P., Venkataramani, A., &
Yousif, M. (2007). Black-box and gray-box strate-
gies for virtual machine migration. Proceedings
of 4th USENIX Symposium on Networked Sys-
tems Design and Implementation, (pp. 229-242).
Retrieved from http://www.usenix.org/events/
nsdi07/tech/full_papers/wood/wood_html/

Xiao, Z., Song, W., & Chen, Q. (2011). Dynamic
resource allocation using virtual machines for
cloud computing environment (unpublished pa-
per). Peking University.

Xiao, Z., Song, W., Chen, Q., & Luo, H. (2010).
Gone with the cloud: Adaptive resource vir-
tualization for Amazon EC2-like environment
(unpublished paper). Peking University.

Xu, H., & Li, B. (2011). Egalitarian stable match-
ing for VM migration in cloud computing. IEEE
Conference on Computer Communications Work-
shops, Shanghai, (pp. 631-636).

Yang, X. (2011). QoS-oriented service computing:
Bring SOA into cloud environment. In Liu, X.
(Ed.), Advanced design approaches to emerging
software systems: Principles, methodology and
tools. Hershey, PA: IGI Global. doi:10.4018/978-
1-60960-735-7.ch013

Yang, X., Nasser, B., Surrige, M., & Middleton,
S. (2012). A business-oriented cloud federation
model for real time applications. Future Genera-
tion Computer Systems, Elsevier. Retrieved from
http://www.sciencedirect.com/science/article/pii/
S0167739X12000386

Zhang, X., Huo, Z., Ma, J., & Meng, D. (2010).
Exploiting data deduplication to accelerate live
virtual machine migration. Proceedings of the
2010 IEEE International Conference on Cluster
Computing, (pp. 11-20). doi: 10.1109/CLUS-
TER.2010.17

Zhu, J., Jiang, Z., & Xiao, Z. (2011). Twinkle: A
fast resource provisioning mechanism for internet
services. 2011 Proceedings INFOCOM, Shanghai,
(pp. 802-810).

ADDITIONAL READING

Armbrust, M., Fox, A., & Griffith, R. (2009).
Above the clouds: A Berkeley view of cloud com-
puting. Berkeley: EECS Department, University
of California.

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., & Ho, A. … Warfield, A. (2003).
Xen and the art of virtualization. Proceedings
of the Nineteenth ACM Symposium on Oper-
ating Systems Principles, (pp. 164-177). doi:
10.1145/945445.945462

Bobroff, N., Kochut, A., & Beaty, K. (2007).
Dynamic placement of virtual machines for man-
aging SLA violations. International Symposium
on Integrated Network Management, Munich,
(pp. 119-128). doi: 10.1109/INM.2007.374776

Buyya, R., Ranjan, R., & Calheiros, R. N. (2009).
Modeling and simulation of scalable Cloud com-
puting environments and the CloudSim toolkit:
Challenges and opportunities. International
Conference on High Performance Computing &
Simulation, Leipzig, (pp. 1-11). doi: 10.1109/
HPCSIM.2009.5192685

IG
I G

LO
BAL PROOF

322

An Infrastructure-as-a-Service Cloud

Chase, J. S., Anderson, D. C., Thakar, P. N.,
Vahdat, A. M., & Doyle, R. P. (2001). Managing
energy and server resources in hosting centers.
Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles, USA, (pp. 103-
116). doi: 10.1145/502034.502045

Chen, G., He, W., Liu, J., Nath, S., Rigas, L.,
Xiao, L., & Zhao, F. (2008). Energy-aware server
provisioning and load dispatching for connection-
intensive internet services. Proceedings of the
5th USENIX Symposium on Networked Systems
Design and Implementation, (pp. 337-350).

Chisnall, D. (2007). The definitive guide to the
Xen hypervisor. Upper Saddle River, NJ: Prentice
Hall PTR: Prentice Hall.

Gulati, A., Merchant, A., Uysal, M., Padala, P., &
Varman, P. (2009). Efficient and adaptive propor-
tional share I/O scheduling. ACM SIGMETRICS
Performance Evaluation Review, 37(2), 79–80.
doi:10.1145/1639562.1639595

Hermenier, F., Lorca, X., Menaud, J., Muller, G.,
& Lawall, J. (2009). Entropy: A consolidation
manager for clusters. Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, (pp.
41-50). doi: 10.1145/1508293.1508300

Karve, A., Kimbrel, T., Pacifici, G., Spreitzer,
M., Steinder, M., Sviridenko, M., & Tantawi, A.
(2006). Dynamic placement for clustered web ap-
plications. Proceedings of the 15th international
conference on World Wide Web, (pp. 595-604).
doi: 10.1145/1135777.1135865

Magenheimer, D. (2009). Transcendent memory
and Linux. Retrieved from http://oss.oracle.
com/projects/tmem/dist/documentation/papers/
tmemLS09.pdf

McNett, M., Gupta, D., Vahdat, A., & Voelker,
G. M. (2007). Usher: an extensible framework for
managing clusters of virtual machines. Proceed-
ings of the 21st Conference on Large Installation
System Administration Conference, (pp. 1-15).

Padala, P., Hou, K., Shin, K. G., Zhu, X., Uysal,
M., & Wang, Z. … Merchant, A. (2009). Auto-
mated control of multiple virtualized resources.
Proceedings of the 4th ACM European Confer-
ence on Computer systems, USA, (pp. 13-26).
doi: 10.1145/1519065.1519068

Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang,
Z., & Singhal, S. … Salem, K. (2007). Adaptive
control of virtualized resources in utility com-
puting environments. Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference
on Computer Systems, USA, (pp. 289-302). doi:
10.1145/1272996.1273026

Seelam, S. R., & Teller, P. J. (2007). Virtual
I/O scheduler: A scheduler of schedulers for
performance virtualization. Proceedings of
the 3rd International Conference on Virtual
Execution Environments, (pp. 105-115). doi:
10.1145/1254810.1254826

Singh, A., Korupolu, M., & Mohapatra, D. (2008).
Server-storage virtualization: Integration and load
balancing in data centers. Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, (pp.
1-12).

Tang, C., Steinder, M., Spreitzer, M., & Pacifici, G.
(2007). A scalable application placement controller
for enterprise data centers. Proceedings of the 16th
International Conference on World Wide Web,
(pp. 331-340). doi: 10.1145/1242572.1242618

Turner, A., Sangpetch, A., & Kim, H. S. (2010).
Empirical virtual machine models for performance
guarantees. Proceedings of the Conference on
Large Installation System Administration Confer-
ence, (pp. 1-11). Retrieved from https://db.usenix.
org//events/lisa10/tech/full_papers/Turner.pdf

Wang, Y., Wang, X., Chen, M., & Zhu, X. (2008).
Power-efficient response time guarantees for
virtualized enterprise servers. Real-Time Sys-
tems Symposium, Barcelona, (pp. 303-312). doi:
10.1109/RTSS.2008.20

IG
I G

LO
BAL PROOF

323

An Infrastructure-as-a-Service Cloud

Wei, G., Vasilakos, A. V., Zheng, Y., & Xiong,
N. (2010). A game-theoretic method of fair re-
source allocation for cloud computing services.
The Journal of Supercomputing, 54(2), 252–269.
doi:10.1007/s11227-009-0318-1

Wood, T., Cherkasova, L., Ozonat, K., & Shenoy,
P. (2008). Profiling and modeling resource usage
of virtualized applications. Proceedings of the 9th
ACM/IFIP/USENIX International Conference on
Middleware, (pp. 366-387).

Wood, T., Shenoy, P., Venkataramani, A., &
Yousif, M. (2007). Black-box and gray-box strate-
gies for virtual machine migration. Proceedings
of 4th USENIX Symposium on Networked Sys-
tems Design and Implementation, (pp. 229-242).
Retrieved from http://www.usenix.org/events/
nsdi07/tech/full_papers/wood/wood_html/

Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoy-
ers, P., Cecchet, E., & Corner, M. D. (2009). Mem-
ory buddies: Exploiting page sharing for smart co-
location in virtualized data centers. Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments,
(pp. 31-40). doi: 10.1145/1508293.1508299

Yang, X., Bruin, R., & Dove, M. (2010). De-
veloping an end-to-end scientific workflow: A
case study of using a reliable, lightweight, and
comprehensive workflow platform in e-science.
Retrieved from http://doi.ieeecomputersociety.
org/10.1109/MCSE.2009.211

Yang, X., Wang, L., & von Laszewski, G. (2009).
Recent research advances in e-science. Cluster
Computing Special Issue, 12(4), 353-356. Re-
trieved from http://springerlink.com/content/
f058408qr771348q/

Zhu, J., Jiang, Z., & Xiao, Z. (2011). Twinkle: A
fast resource provisioning mechanism for internet
services. 2011 IEEE Proceedings of INFOCOM,
Shanghai, (pp. 802-810).

KEY TERMS AND DEFINITIONS

Cloud User: A cloud user refers to the person
who use the service provided by a cloud system.
According to the type of cloud service, it may
be an application user, a software developer or a
system architect.

Live Migration: A running virtual machine
can be migrated from one physical machine to
another without its application being interrupted.
That technology is called live migration.

Proportional Resource Allocation: With a
proportional resource allocation strategy, when
contention encountered, each entity should get
a share of resource proportional to its presetting
weights, no matter how greedy the other entities
are.

Resource Provisioning: Resource provision-
ing refers to the process of assembling computing
resources like CPU, memory, disk and network
I/O to serve application computation.

Resource Scheduler: A resource scheduler
refers to the entity that performs resource sched-
uling task.

Scheduling Algorithm: Scheduling algorithm
refers to the detailed process of the policy for
resource scheduling.

Service Level Agreement (SLA): SLA is
the quantized specification of the service a cloud
provider promises.IG

I G
LO

BAL PROOF

