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Abstract

On computing clusters, the autoscaler is respon-
sible for allocating resources for jobs or fine-
grained tasks to ensure their Quality of Service.
Due to a more precise resource management, fine-
grained autoscaling can generally achieve better
performance. However, the fine-grained autoscal-
ing for streaming jobs needs intensive computation
to model the complicated running states of tasks,
and has not been adequately studied previously.
In this paper, we propose a novel fine-grained au-
toscaler for streaming jobs based on reinforcement
learning. We first organize the running states of
streaming jobs as spatio-temporal graphs. To ef-
ficiently make autoscaling decisions, we propose
a Neural Variational Subgraph Sampler to sample
spatio-temporal subgraphs. Furthermore, we pro-
pose a mutual-information-based objective func-
tion to explicitly guide the sampler to extract more
representative subgraphs. After that, the autoscaler
makes decisions based on the learned subgraph rep-
resentations. Experiments conducted on real-world
datasets demonstrate the superiority of our method
over six competitive baselines.

1

At present, massive streaming data, e.g., video stream, is
generated incessantly on service-based applications, and pro-
cessed by streaming jobs [Sun et al., 2019]. Each job is com-
prised of multiple rasks that execute specific computing op-
erations. In order to minimize response latency and to im-
prove the usage efficiency of computing resources, it is crit-
ical to design an autoscaler [Nguyen et al., 2020], which is
responsible for allocating computing resources to jobs or fine-
grained tasks, namely job-level and task-level autoscaling, re-
spectively. Previous work has demonstrated that fine-grained
resource management can generally achieve performance im-
provement in various computing scenarios due to a more pre-
cise resource allocation, e.g., 11-x faster execution speed for
web services [Qiu er al., 2020] and 35% gain on GPU utiliza-
tion [Yu ef al., 2018]. It is valuable and promising to design
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Figure 1: The categories of RL-based autoscalers, which have shown
their superiority over heuristic-based methods in previous work.

an effective task-level autoscaler for streaming jobs.

Designing an optimal autoscaler is known to be NP-
hard [Garf er al., 2021]. An easy approach is to use heuris-
tics, namely heuristic-based autoscalers [Verma et al., 2015].
They are typically based on heuristic rules meticulously tuned
by experts, which is not only a time-consuming process but
also subject to human cognitive bias. To remedy these draw-
backs, another line of work [Mao et al., 2016] formulates the
autoscaling process as Markov Decision Process (MDP), and
adopt Reinforcement Learning (RL) to train the autoscalers,
namely RL-based autoscalers.

Despite the superiority of RL-based autoscalers, how to au-
toscale streaming jobs at task-level with RL remains a chal-
lenging problem and has not been adequately studied. As
shown in Fig. 1, DeepRM [Mao er al., 2016], DREAM [Ni
et al., 2020] and DeepWave [Sun er al., 2020] used RL to
autoscale batch jobs that process deterministic size of input
data and cannot deal with streaming jobs with time-variant
workloads. Although TVW-RL [Mondal ef al., 2021] con-
sidered the temporal patterns of dynamic workloads, it fo-
cused on job-level autoscaling rather than task-level, which
neglected the topological task dependencies within a job and
thus caused poor performance as shown in the experiments.
Another obstacle is the large temporal dimension issue. Typi-
cally, the streaming jobs will be running online for months or
even years [Hueske and Kalavri, 2019] and produce massive
records of job states. It brings heavy computation overhead to
model the recorded fine-grained task states, which will harm
the autoscaling efficiency of time-critical stream computing.

To address the above issues, we propose a novel taSk-
level aUtoscaler for stReaming jobs with reinforcement
1Earning (named SURE). First, we give an MDP formulation
that can accurately describe the autoscaling process. More
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specifically, as a streaming job can normally be encoded as a
Directed Acyclic Graph (DAG) [Hueske and Kalavri, 2019],
we organize the running states of streaming jobs as Spatio-
Temporal Graphs (STGs), which take both the topological
task dependencies and temporal workloads evolution into
consideration and can better model the dynamic task states.
Second, due to the large temporal dimension issue, it is in-
efficient to learn the entire STG. To alleviate this problem,
we further design a novel Neural Variational Subgraph Sam-
pler to extract informative subgraphs. While the subgraph
sampler can be implicitly optimized during policy training,
we propose an objective function based on mutual informa-
tion maximization, which can explicitly enhance and guide
the sampler to extract more representative subgraphs. After
that, we leverage Graph Neural Network (GNN) to learn the
sampled subgraphs as the representation of the entire STG,
which can accelerate the model inference speed significantly.
Finally, RL is applied to train the autoscaler.

To our best knowledge, we are the first to utilize RL to
learn task-level autoscaler for streaming jobs. Extensive ex-
periments conducted on real-world datasets demonstrate that
our method outperforms six baselines. In addition, ablation
study, parameter sensitive analysis and visualized case study
are provided for better understanding of our work.

2 Related Work

Heuristic-based Autoscaler. HPA [Nguyen et al., 2020]
periodically configured the number of replicas based on the
monitored metrics, e.g., CPU utilization ratio, and the cor-
responding desired metric values. Graphene [Grandl ef al.,
2016] identified tasks that cost a long time to complete, and
selected the schedule order with the minimum runing time.
Voila [Fahs et al., 2020] scale-up or scale-down pods by iden-
tifing high network latency or overloaded replicas.

Reinforcement-learning-based Autoscaler. Although
heuristic-based methods have been widely deployed in
industry, they are sub-optimal by nature. To tackle this
issue, DeepRM modeled the resource states as bitmap, and
applied RL to schedule resources. DeepWeave employed
GNN to process DAG information and rewarded solutions
with faster Job Completion Time. DREAM designed an
Encoder-Decoder framework with GNN and RL to schedule
jobs according to their dependencies. However, the afore-
mentioned methods can only schedule batch jobs with static
workloads. TVW-RL exploited the temporal patterns of
time-varying workloads and used RL to improve the metrics
for operational excellence.

Spatio-temporal Graph Modeling. Spatio-temporal graph
neural network is becoming growingly important in model-
ing time evolutionary spatial data. ASTGCN [Guo et al.,
2019] consisted of three independent components to model
temporal properties, where each component contained the
spatio-temporal convolution and attention mechanism to ef-
fectively capture the dynamic spatio-temporal correlations.
CCRNN [Ye et al., 2021] constructed learnable adjacency
matrices in different layers and used a layer-wise coupling
mechanism to capture the multi-level spatial dependence and
temporal dynamics simultaneously.

565

Gi1

2
Q
<
2]
Q
<
c
” | |
13
- g
t—1 M t - t+1
Rescaling Span Rescaling Span
l;tfl g‘ ?lt atil

Figure 2: The MDP formulation of autoscaling process of streaming
jobs. The running states of jobs (i.e., snapshots) can be organized as
spatio-temporal graphs G.

3 Problem Definition

To begin with, we give a formal definition of task-level au-
toscaling for streaming jobs. Given a streaming job j, it can
be abstracted as a DAG, denoted as (V, £, P), where V is the
node set and each node denotes a task in job j, and £ rep-
resents the dependencies between tasks, and P denotes how
many units of resources are allocated to task nodes, namely
parallelism. Job j continuously receives and processes time-
varying size of input data, e.g., video stream. As shown
in Fig. 2, for every L minutes (named rescaling span), the
autoscaler needs to allocate more resources (scale-up par-
allelism) for task nodes if the workloads increase, and re-
lease free resources (scale-down parallelism) for tasks with
low workloads. In the meantime, a monitor records the job
DAG states every minute, which can produce L state snap-
shots [G1,Ga, ..., G| during a rescaling span, where G is
the state of job DAG at the /-th minute in rescaling span. In
G|, the i-th task node, denoted as v; ;, is associated with a fea-
ture vector s;; € RP, where the elements in s; are system
metrics recorded by monitor, including average and summa-
tion of received data size, CPU usage, parallelism and aver-
age computation time of v; ;, and D is the feature dimension.
There are two typical performance metrics for streaming jobs,
namely latency and resource utilization ratio. Specifically,
the latency is defined as the duration of a unit of streaming
data completely processed by the job, and the resource uti-
lization ratio denotes the proportion of resource usage.

In order to train the autoscaler with RL, we use a tuple
(State, Action, Transition, Reward) to formulate the au-
toscaling process as Markov Decision Process (MDP) that
can accurately describe the dynamic task states based on the
above notations. This MDP tuple can be specified as follows:
e State. At the ¢-th step, by connecting the consecutive L
snapshots recorded from the (¢-1)-th to ¢-th step, we can build
a spatio-temporal graph G;_1 as illustrated in Fig. 2, where
each node v; ; is associated with feature vector s; ;.

e Action. Action a;, a decimal in (0.0, 2.0], is defined as
the ratio between desired parallelism p; ; and current paral-
lelism p; ;1 of task node v;. This is based on an empiri-
cal setting [Taherizadeh and Grobelnik, 2020] that, for each
rescaling operation, the parallelism value cannot be reduced
to zero or scaled up to more than twice of previous value.

o Transition. Given the autoscaling decision a; ; conditioned
on G;_1, task node v; changes its parallelism to p; ;. The
streaming job then continues running for L minutes, and gen-
erates a spatio-temporal graph G; as the new state.
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Figure 3: The overall architecture of our proposed approach. It shows an example to sample a subgraph for task node vz, and then make
autoscaling decision for this task node. L, K, k1 and k2 are set as 5, 4, 3 and 2 in this example. “FFN” denotes the feed forward network.
The steps labeled with @, @, @ and @ correspond to the four steps introduced in Section 4.1.

e Reward. The reward r; is designed to minimize latency l;
and maximize resource utilization ratio u;:

Tt = 7)\[1 —+ (1 — )\)'Uqg7 (1)

where A € [0, 1] controls the importance of each metric and
can be tuned according to specific jobs.

With the above MDP formulation, the autoscaler can make
decisions based on the topological task dependencies and
temporal workloads dynamics implied in the spatio-temporal
graphs. However, since the rescaling span L is usually large
for streaming jobs [Nguyen et al., 20201, i.e., the large tempo-
ral dimension issue, the recorded job snapshots are massive,
which makes the spatio-temporal graph too huge to be di-
rectly learned with conventional Spatio-Temporal GNNs [Ye
etal., 2021], and brings heavy computation overhead for state
modeling and decision-making. Therefore, we need to design
a graph learning method, which can accelerate the decision
inference speed without performance degradation.

4 Methodology

In this section, we present the learning details of our ap-
proach. First, we propose a novel Neural Variational Sub-
graph Sampler. By learning the sampled informative sub-
graphs, it can reduce the time cost of autoscaling decision-
making. Furthermore, in order to explicitly extract more rep-
resentative subgraphs, we propose an objective function de-
duced by mutual information maximization. Finally, we em-
ploy RL to train the autoscaler policy.

4.1 Neural Variational Subgraph Sampler

In this part, we aim to tackle the large temporal dimension is-
sue and effectively learn the task node representations from
giant Spatio-Temporal Graph (STG). Specifically, for each
task node in a job DAG, we propose to sample a subgraph
from STG, which maintains the most informative features of
this task node in STG. By only learning the subgraph instead
of the entire STG, it can greatly save the time cost of decision
making. Huang and Zitnik also have proved that the infor-
mation loss of operating GNN on a subgraph rather than the
entire graph is bounded by an exponentially decaying term
with respect to the node number of subgraph.
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More specifically, motivated by the weighted video stream
sampling models [Zhi er al., 2021], we assume that there is an
underlying importance weights distribution of snapshots for
each task node along the temporal dimension, and only a sub-
set of snapshots is salient and valuable. Analogously, from
the spatial perspective, we also assume that only a subset
of spatial neighbors is most relevant with a specific node in-
spired by Graph Attention Network [Velikovic et al., 2018].
Aside from lower computation cost, another benefit of intro-
ducing the weighted sampling mechanism is to reduce the
noise or irrelevant features that could lead to performance
degradation. Based on the above assumptions, we design a
novel Neural Variational Subgraph Sampling (named NVSS)
strategy, consisting of the following four steps.

® Input Tensor Construction. Our goal is to derive
the temporal and spatial sampling probability distributions
p(6;]S;) and p(¢;|S;), where 6; is the importance weights
along temporal dimension of task node v;, and ¢! is the spa-
tial sampling weights of v; at the [-th snapshot, and S; de-
notes the running states of v;. First, for node v;, we build an
input tensor S; € REXUHK)XD from the L recorded snap-
shots, where K = |N.(v;)| is the number of c-hop neighbor
nodes of v;. As shown in Fig. 3, the first column (in gray)
of &, is the feature vectors [s;1,8:2,...,8;]" of nodes
{vi1,vi2,...,v;, 0}, and the last K elements (in blue) at
the [-th row are the feature vectors of the c-hop neighbors
of v;; (for brevity, we hide the feature dimension D in Fig. 3,
and set L = 5 and K = 4, so the shape of S; is 5 x (1 + 4)).

@ Sampling Distribution Inference. To capture the under-
lying correlation of spatial and temporal domains, we aim to
learn the joint spatial and temporal importance weights dis-
tribution p(£2;|S;) = p(8;, ¢;|S;) instead of learning p(6;|S;)
and p(¢;|S;) separately. In specific, we design a variational
inference network to obtain p(£2;|S;). Here, we assume
p(Q;|S;) follows Gaussian distribution N (1, ¥;), and derive
the mean p; € REXU4EK) and co-variance 3; € RE*(1+K);
pi =o(WiS;), ¥i=a(W3§,),
where o is activation function, and W, and W5, are learnable

parameters. Then, the joint spatio-temporal sampling distri-
bution Q; € REX(HK) can be drawn from N (u;, %;). We
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can obtain the 6; and gzbé from €; as follows:
I
91' = (Qm,n)lgmgln (]Sl = (Qm,n) m=l 5
n=1 2<n<K+1

where 0; € RL and ¢! € RX are the first column and the last
K elements at the [-th row from €2;, respectively.

@ Subgraph Sampling. Next, we sample a subgraph for
node v; using 6; and ¢;. First, k; informative snapshots
can be sampled from Multinomial(f;) for node v;. We
name the v; in the corresponding sampled snapshots as tem-
poral anchor nodes, e.g., v2 1, V24 and vy 5 (green nodes)
in Fig. 3. Second, for each temporal anchor node v;;, ko
spatial neighbor nodes (yellow nodes) can be sampled from
Multinomial(¢!) in the I-th snapshot, where the spatial
neighbor nodes are from the c-hop neighbors set of v;, i.e.,
N.(v;). In this way, we can obtain the sampled temporal an-
chor nodes, and the corresponding spatial neighbor nodes. By
connecting temporal anchor nodes as depicted in Fig. 3, we
can reconstruct the sampled subgraph g; for task node v;. Un-
der this sampling procedure, the marginal likelihood of g; is:
k‘l kg

=11

I=1s=1
where v;, and v; are the sampled spatial neighbor and tempo-
ral anchor nodes, respectively.

Note that the sampling processes include drawing €2; from
N (pi, X;) and sampling nodes from p(6;) and p(¢;), but
they are undifferentiable, making back-propagation inappli-
cable. To solve this issue, we adopt the Reparameterization
Trick [Kingma et al., 2015] that can be specified as follows:

x ~ N(0,diag(I)) y ~ Gumbel(0,1)
Q; =log(x x X; + 1) + v,

where « and y are sampled random variables from Gaussian
and Gumbel distribution respectively, and diag(I) is a diago-
nal matrix with all-one diagonal elements. In this way, we can
transfer the undifferentiable factor to « and y, while p; and
>, are differentiable and can be optimized during training.

@ Autoscaling Decision Making. After obtaining the sam-
pled subgraph g;, we utilize GraphSAGE [Hamilton er al.,
2017] to learn subgraph representation as the state of task
node v;, which can save considerable amount of state mod-
eling time compared with learning the entire STG (detailed
time complexity analysis can be found in Appendix B). The
message passing process of GraphSAGE can be specified as:

ZuEM(i) h271 ])
| M(3)] ’
where W§ is the learnable parameter at the e-th layer of
GraphSAGE, and M(i) is the neighbor nodes set of v;. The
input h! of the first layer of GraphSAGE is the node features
{8u}ueg, - Recall that subgraph g; is sampled with respect to
node v;, we can regard h,, = Readout(hZ|u € g;) as the
representation of v;, where the Readout function is average
pooling and E is the number of GraphSAGE layers.

Finally, a linear layer acts as the agent to make autoscaling
decision for v; based on the state representation hg, :

ai = o(Wihg,), 3)
where a; is the action decision of autoscaling (introduced in
Section 2), and W is a learnable parameter.

p(9:|S:) )p(vi]0:)p(0;, 9i|Si)), (2)

B = o(Wilhi ™
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4.2 Enhancing NVSS via Mutual Information

In the previous section, NVSS can be implicitly learned to
sample informative spatio-temporal subgraphs, due to the ex-
isting of reward signal from RL. In this section, we explicitly
encourage the sampled subgraphs to reveal the most represen-
tative topological information of the entire STG, and enhance
NVSS to extract more representative subgraphs.

Specifically, we would like to minimize the semantic diver-
gence between the sampled subgraph g; and the entire STG
G. Since the Mutual Information (MI) [Kraskov et al., 2004]
measures the mutual dependence between two variables, and
a larger MI means that the two variables are more correlated,
we propose an objective function from the MI perspective as
follows (we omit the subscript of g; for concision):

max I(f(9), f(G)) = H(f(9)) — H(f(9)|f(G)), &

where H denotes the entropy of the given distribution, and f
denotes the GraphSAGE that extracts features for graphs.
With the likelihood distribution of subgraph g (Eq. 2), the
lower bound of objective function (Eq. 4) can be derived as
follows (please see Appendix A for detailed derivation):

Y(97 g) = log]Eng(g|S)I(f(g)7 f(g))
> ( (¢(S)][p(©g. 5))

~ (3logl®| + (2 - )

(&)

TS7HQ - p) + CB(9,Q)

+ EqlogI(f(g), f(G))), (©)

where KL represents KL-divergence [Anzai, 2012], and CFE

denotes Cross Entropy loss, and €2 is the joint distribution of
actually sampled temporal anchor and spatial neighbor nodes.
The objective function (Eq. 6) includes three parts, i.e.,
KL-divergence, log-likelihood of prior distributions and log
of MI, which are intuitive. The KL-divergence term attempts
to minimize the distance between the estimated distribution ¢
and the true distribution p. The second term is regularization
term of prior distributions. The log of MI ensures that the
sampled subgraphs contain the most representative informa-
tion of the entire STG. The first and second terms in Eq. 6 are
easy to compute. As for the MI term, we adopt the Jensen-
Shannon MI estimator [Nowozin et al., 2016] as follows:

1(f(9), (9)) =Ep[=sp(Du (f(9), F(9)))]
—Es[sp(Du (£(5), £(9))),

where D,, is a discriminator that takes a subgraph and STG
embeddings pair as input and determines whether the sub-
graph is sampled from the STG, and sp(z) = log(1l + e?)
is the softplus function, and ¢’ is negative sampled subgraph
from p = p. In practice, we generate negative subgraphs by
using all possible combinations of STG and subgraph embed-
dings across all graph instances in a mini-batch.

Indeed, there have been a few studies that used subgraph
sampling and mutual information techniques simultaneously,
however, our method has two major differences. First, NVSS
can capture the underlying correlation of spatial and temporal
domains, and be end-to-end optimized, while the samplers in
previous work are heuristic-based [Sun et al., 2021] or can-
not perform sampling for a specific node along the temporal
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\ | Small-1  Small-2  Medium-1 Medium-2 Large-1 Large-2 [ Average
Heuristic-based HPA -0.17 1.16 -2.69 -0.90 -1.28 -2.35 -1.04
DeepWave -2.77 -1.23 0.16 -0.97 0.69 0.32 -0.63
RL-based DREAM 0.50 -0.23 0.23 -0.11 0.92 -1.14 0.03
TVW-RL 0.26 0.66 0.08 -0.40 0.95 0.85 0.40
Spatial-temporal GNN ASTGCN 0.26 -0.66 0.36 1.09 -1.24 0.29 0.02
p p CCRNN 0.48 0.97 0.24 112 -0.57 0.46 0.45
Ours SURE 0.52 1.41 1.19 1.81 1.02 0.95 1.15

Table 1: Performance comparison with baselines on Small, Medium
results are in bold, underline and gray cell, respectively.

dimension [Yu et al., 2020], which cannot be applied in this
scenario and compared with our method. Second, we seek for
a seamless integration of the subgraph sampling and mutual
information rather than a simple combination of the two tech-
niques. With the derived objective function (Eq. 6), the two
parts can be jointly trained and mutually optimized. More-
over, the objective function is also intuitive and interpretable.

4.3 Training with Reinforcement Learning

Here, we use RL to optimize the autoscaler policy. The ex-
pected sum of rewards is B = E.[>.,2,~7'r], where 7
represents the policy that makes autoscaling decisions with
Eq. 3, and v € (0,1] is a discount factor that reduces fu-
ture rewards relative to current reward, and 7r; is the reward
function as defined in Section 2. The objective function that
needs to be maximized for optimizing the autoscaler policy
is: J(¢) = % Zgzl logmy R, where 1 is the model parame-

N
ters. Combined with the MI-based objective function (Eq. 6),
the total loss of our modelis £L = —J —\; Zi‘;ll Y;, where \q

is a hyperparameter that adjusts the weight of the MI-based
loss. More learning details can be found in Appendix C.

S Experiments

5.1 Experimental Setup

Simulation Environment. Following the streaming job ex-
ecution logic described in Section 2, we implement a sim-
ulated computing system for streaming jobs and register a
monitor for each job to record its state snapshots periodically.

Dataset. We use Clarknet Trace ! as workloads, which de-
scribes the number of HTTP requests to the servers recorded
in 20,000 minutes. The workloads are highly varying in time,
and show periodicity characteristics. As for computing jobs,
since we focus on long-running streaming jobs, we only keep
the jobs in Alibaba Cluster Dataset > that were running for
more than 2,000 minutes following Mondal ef al.. The de-
tails of datasets can be found in Appendix D. 1.

Experiment Settings. To evaluate the performance of our
method on jobs with different task numbers, we randomly
sample six jobs and divide them into three sets, namely Small,
Medium and Large. More specifically, the task numbers of
Small-1, Small-2, Medium-1, Medium-2, Large-1 and Large-
2 are 6, 16, 25, 32, 40 and 46, respectively. Each job acts as

Lftp://ita.ee.Ibl.gov/html/contrib/ClarkNet-HTTP.html
*https://github.com/alibaba/clusterdata

and Large job settings, respectively. The best, second best and third best
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an individual simulation environment and receives a subse-
quence of workloads that lasts for 7 x 24 hours in ClarkNet
Trace in each episode. For each job, we first train an au-
toscaler and then use it to perform testing on this job for ten
times and take the average reward as the final result.

Baselines. We compare our method with baselines from
three categories: (1) heuristic-based autoscaler, i.e., HPA;
(2) RL-based autoscaler, i.e., DeepWave, DREAM and
TVW-RL; and (3) spatio-temporal GNN, i.e., ASTGCN and
CCRNN. Due to space limitation, we skip their details that
have been presented in related work. For fair compar-
isons, we use the same features for all baselines, and make
slight modifications for them to fit for our scenario. Fol-
lowing DREAM, DeepWave and TVW-RL, we use REIN-
FORCE [Williams, 1992] to train our autoscaler. The de-
tails of parameter settings and modifications of all compared
methods are in Appendix D.2. The code and Appendix are
available at https://github.com/xmzzyo/sure.

5.2 Performance Comparison

We present the standardized rewards of all baselines and our
method on Small, Medium, Large job settings in Table 1.

In general, RL-based autoscalers perform better than HPA
on most jobs, because their strategies can be optimized re-
garding specific job environments, while HPA uses heuristic
rules and cannot be well adapted to different jobs and dy-
namic workloads. TVW-RL performs the best among RL-
based methods on average, since it can model the tempo-
ral patterns of workloads, which is critical when autoscaling
streaming jobs. Among all the baselines, CCRNN achieves
the best performance on average. It uses a layer-wise cou-
pling mechanism to capture the multi-level dependence of
temporal and spatial domains. Our method consistently out-
performs all the competitors on all jobs. It strongly supports
our claim that the proposed subgraph sampling strategy can
extract representative subgraphs, which imply the joint spatial
and temporal correlations of the entire STG. By only learning
the subgraphs, it can derive effective task representations and
make good decisions. Moreover, our sampling mechanism
can also alleviate the interference of redundancy information
or noise, which can benefit the model performance.

5.3 Ablation Study

To examine the effects of different modules, three variants of
our method are compared, including: (A) w/o NVSS denotes
using an uniformly random sampler instead of NVSS; (B) w/o
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[Small-1 Small-2 Medium-1 Medium-2 Large-1 Large-2

w/o NVSS| 046 -1.30 0.21 -0.82 -1.27 029
wioMI | 047 -0.78 0.22 -0.82 0.78  0.33
SURE | 0.52 141 1.19 1.81 1.02 095

Table 2: Ablation study of our model. The best results are in bold.
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Figure 4: Sensitivity analysis by varying k; and A for Large-1 job.

MI denotes using only NVSS without mutual-information-
based objective function (Eq. 6); (C) SURE denotes our com-
plete model. Table 2 indicates that the random sampling strat-
egy does not perform well. Nevertheless, with our subgraph
sampling strategy NVSS, it can extract informative subgraphs
that contribute to a higher final reward. By incorporating our
proposed objective function based on M1, it can lead to a great
performance improvement, which proves that this objective
function can guide the NVSS to extract more representative
subgraphs and learn effective task representations.

5.4 Performance Tuning

One major contribution of this paper is the subgraph sam-
pling strategy, which can reduce the time cost of model infer-
ence, while achieving superior performance. In this part, we
report the inference time and reward influenced by the num-
ber of sampled snapshots (i.e., k7). In addition, by varying
A in Eq. 1, we also examine the sensitivity of metrics that
compose the reward, i.e., latency and utilization ratio. Due
to space limitation, we only present the results on Large-1
job (the results on the other jobs are similar and can be found
in Appendix D.3), and incorporate the best baseline CCRNN
from Table 1 for comparison.

Fig. 4(a) shows that our model consistently outperforms
the best baseline, and the reward declines when k increases.
A possible reason is that redundant snapshots may intro-
duce noise or irrelevant information that lead to performance
degradation for Large-1 job. Fig. 4(b) indicates that the in-
ference time of our model is much less than CCRNN and
shows a rising trend as k; increases, since learning more
snapshots would bring more computation overhead. From
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Figure 5: Case study based on Small-1 job.

Fig. 4(c) and 4(d), we can see that our approach can achieve
lower latency and competitive utilization efficiency on most
A settings. Note that we cannot always have improvements
on both metrics, since a lower latency would generally cost
more or even redundant resources. Nevertheless, the com-
prehensive performances of our model, i.e., the reward and
inference time, are consistently better than the best baseline.

5.5 Case Study

In this part, we show qualitative cases based on Small-1 job to
give intuitive impressions of our model. The DAG structure
of Small-1 job can be found in Appendix D.4

Fig. 5(a) presents the heatmap of sampling distribution {2
of task node v;. From the first column of € (i.e., ), we can
observe that the most recent snapshots (framed in green) are
more likely to be sampled along temporal dimension, which
is reasonable and intuitive since they are more related to the
states at the next step. Besides, the nearest (1-hop) neighbor
nodes of vy, i.e., vo, v3 and vy (framed in blue), have larger
probabilities to be sampled, since they are more topological
relevant to v1. In Fig. 5(b), we use t-SNE to visualize the em-
beddings of subgraphs sampled for task nodes and the entire
STG in ten autoscaling steps. As depicted, the embeddings
are grouped into four clusters. The vq, v3 and vy are grouped
together as they are 1-hop neighbors of vy, and vs and vg
are 2-hop and 3-hop neighbors of v;. It demonstrates that our
graph embeddings can effectively present the topological fea-
tures of nodes, and the subgraph embeddings are centralized
and closed with the embedding of the entire STG G.

6 Conclusion

In this paper, we propose a novel approach to autoscale
streaming jobs at task-level with reinforcement learning. We
first organize the job states as spatio-temporal graphs and give
a formal MDP formulation of autoscaling process. To ef-
ficiently learn the giant spatio-temporal graphs, we design
a Neural Variational Subgraph Sampler, which can greatly
save the graph learning time. Furthermore, we propose an
objective function based on mutual information to guide the
sampler to extract more representative subgraphs. Our ex-
periments demonstrate the superior performance and inter-
pretability of our approach. In the future, we will apply our
method to solve other classical spatio-temporal graph model-
ing tasks, such as traffic forecasting and pose detection, which
also suffer from the large temporal dimension issue.
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