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Abstract
Distributed deep neural network training necessitates effi-
cient GPU collective communications, which are inherently
susceptible to deadlocks. GPU collective deadlocks arise eas-
ily in distributed deep learning applications when multiple
collectives circularlywait for each other. GPU collective dead-
locks pose a significant challenge to the correct functioning
and efficiency of distributed deep learning, and no general
effective solutions are currently available. Only in specific
scenarios, ad-hoc methods, making an application invoke
collectives in a consistent order across GPUs, can be used to
prevent circular collective dependency and deadlocks.
This paper presents DFCCL, a novel GPU collective com-

munication library that provides a comprehensive approach
for GPU collective deadlock prevention while maintaining
high performance. DFCCL achieves preemption for GPU col-
lectives at the bottom library level, effectively preventing
deadlocks even if applications cause circular collective depen-
dency. DFCCL ensures high performance with its execution
and scheduling methods for collectives. Experiments show
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that DFCCL effectively prevents GPU collective deadlocks in
various situations. Moreover, extensive evaluations demon-
strate that DFCCL delivers performance comparable to or
superior to NCCL, the state-of-the-art collective communi-
cation library highly optimized for NVIDIA GPUs.
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1 Introduction
Recent years have witnessed the parameter count of deep
neural network (DNN) models grow faster than the memory
capacity and computational power of a single GPU [3, 21, 57].
This entails distributedDNN training, which includes various
techniques such as data parallelism (DP) [35, 56], tensor
parallelism (TP) [7, 59, 65], pipeline parallelism (PP) [25,
40, 41], and hybrid parallelism [7, 41, 55]. GPU collective
communications are used to synchronize DNN status and
play a critical role in distributed DNN training.

Widely used GPU collectives are vulnerable to deadlocks,
because they work in a resource-holding, busy-waiting way,
and preemption is ill-supported on GPUs. GPU collective
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(a) Legal: consistent order.
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(b) Legal: disorder with sufficient re-
sources.
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(c) Deadlock: disorder with single
queue or resource-depletion.
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Coll. A Coll. B

Sync.

Sync.

(d) Deadlock: disorder with GPU
synchronization, despite sufficient re-
sources.

Figure 1. Legal Situations and Basic Deadlock Situations. In the figures, both collective A and collective B execute on
GPU 0 and GPU 1. The diamonds within each GPU represent the resource "units" required to execute a collective on that
GPU, assuming collective A and B require the same amount of resources. Solid arrows indicate that a resource unit has been
allocated to a collective, which means the collective is executing on that GPU. Dashed arrows represent a collective applying
for a resource unit from a GPU, signifying that the collective is invoked on that GPU but is not executing. Outlined red arrows
depict the dependencies of idle resources on allocated resources introduced by GPU synchronization.

deadlocks occur when an application causes circular collec-
tive dependency. We summarize the basic deadlock situations
of GPU collectives (Fig. 1) at the bottom library level of the
distributed deep learning stack. The disordered invocation
of collectives across different GPUs emerges as a necessary
condition for circular collective dependency and deadlocks,
while GPU synchronization (see Sec. 2.3) exacerbates the cir-
cular collective dependency.

We conduct simulation experiments to quantitatively ana-
lyze the susceptibility of GPU collectives to deadlocks. The
simulation experiments (Table 1) show that low probabilities
of collective disorder and GPU synchronization (both 0.004%)
can cause high deadlock risks (6.94%), and the deadlock ratio
is more sensitive to GPU synchronization than to disordered
collective invocation.
GPU collective deadlocks pose significant threats to the

correct functioning, training efficiency, and hardware utiliza-
tion of distributed deep learning. GPU collective deadlocks
can cause GPUs to show 100% utilization with no progress
being made, leading to wasted resources [12–14, 16]. The
deadlocks are challenging to identify and resolve with little
error messages or logs clearly indicating the problem [30, 39].
Existing methods fail to deal comprehensively and effec-

tively with GPU collective deadlocks. Current methods to
prevent circular collective dependency and deadlocks are
stopgap case-by-case solutions that make an application in-
voke collectives in a consistent order across GPUs, with GPU
synchronization unmanaged. At present, manual hardcoding,
which is expensive to develop and verify, and tightly coupled
with applications, remains the sole practical approach when
integrating PP with other parallel techniques. In more com-
plex and irregular distributed DNN training scenarios [6, 11],
applying the labor-intensive yet ad hoc manual collective
orchestration method is quite challenging, and uncontrolled
GPU synchronization further diminishes its effectiveness.

This paper presents DFCCL (Deadlock Free Collective
Communication Library), which is, to the best of our knowl-
edge, the first GPU collective communication library that
provides a comprehensive approach for GPU collective dead-
lock prevention and maintains high performance.
DFCCL offers a general and effective method to prevent

deadlocks in various scenarios via preemption, fundamentally
breaking the inherent susceptibility of GPU collectives to
deadlocks. DFCCL executes collectives in a two-phase block-
ing manner [20, 49] in the daemon kernel, preempting collec-
tives deemed to be stuck via context switch. With preemptive
support at the bottom library level, circular collective depen-
dency from applications no longer causes deadlocks.
DFCCL maintains high performance with three key de-

signs: ❶ DFCCL employs the on-GPU control logic and the
busy-waiting [46] execution mode before preempting a col-
lective to ensure high throughput. ❷ DFCCL makes each
GPU independently perform collective preemption in a de-
centralized dynamic manner to avoid coordination overheads
amongGPUs.❸DFCCL’s adaptive scheduling scheme, which
supports user-specified priority and achieves decentralized
dynamic gang-scheduling for collectives, ensures efficient
scheduling and execution of collectives.
We implement DFCCL based on NVIDIA GPUs. DFCCL

can be seamlessly integrated with existing distributed deep
learning frameworks [1, 51, 66] by appropriately substituting
their NCCL API calls with DFCCL API calls.
Experimental results show that DFCCL effectively pre-

vents GPU collective deadlocks. We compare collective band-
width and latency between DFCCL and NCCL [46], the state-
of-the-art (SOTA) collective communication library highly
optimized for NVIDIA GPUs. We conduct experiments to
compare the DNN training performance using collectives
fromDFCCL versus NCCL across various distributed training
techniques and frameworks. Evaluation results show that
DFCCL delivers performance comparable to NCCL, which



Comprehensive Deadlock Prevention for GPU Collective Communication EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

requires various scenario-dedicated CPU orchestration, and
achieves performance gains under certain circumstances.

This paper makes the following contributions:
• We quantify the analysis of deadlocks and the influencing
factors through simulation experiments.
• We identify the preemption chances for GPU collectives
and introduceDFCCL, a novel GPU collective communication
library that offers a comprehensive approach to preventing
GPU collective deadlocks with performance guarantees.
• Experimental results show that DFCCL effectively prevents
GPU collective deadlocks and achieves performance compa-
rable to or superior to NCCL.

2 Background and Motivations
2.1 NCCL
NCCL provides GPU collectives efficiently utilizing inter-
GPU bandwidth, and is commonly used in distributed DNN
training. Experiments show that the throughput of NCCL
all-reduce surpasses that of CUDA-aware MPI [31, 61] when
the buffer size exceeds 32 KB. The increase in throughput
reaches over 6.7× at most.

NCCL boosts throughput by shifting from the CPU-based
control plane to the on-GPU, busy-waiting control logic,
which, however, makes NCCL collectives deadlock-prone.

2.2 Community Discussions
The documentation of fundamental distributed DNN training
tools merely alerts developers to the risk of NCCL deadlocks
without providing practical solutions [2, 15, 45, 47, 48].

We investigate issues reporting NCCL-related deadlocks
in Pytorch, DeepSpeed, and TensorFlow repositories. When
a deadlock occurs, typical symptoms include the program
hanging, GPU utilization stuck at 100%, NCCL logs failing
to provide valuable information. Despite extensive discus-
sions, no final solutions are proposed in many issues, while
in others, only ad-hoc workarounds are offered, such as in-
troducing fences or turning off certain hardware features.

The deadlocks reported in some issues conform to the GPU
synchronization-related deadlock case (Sec. 2.3), and the im-
provised methods avoid the mutual interference between
GPU synchronization and collectives. Issue #31095 reported
in PyTorch [13] reports a scenario where after the invoca-
tion of GPU collectives, a process gets stuck at the code line
responsible for page-locked host memory allocation. When a
sleep interval is added between the GPU collectives and the
memory allocation, this problem disappears. Issues reporting
NCCL deadlocks from various repositories [12, 14, 16] sug-
gest disabling IOMMU (Input-Output Memory Management
Unit), which triggers CPU-initiated GPUmemory operations,
leading to implicit GPU synchronization.

2.3 Analysis of GPU Collective Deadlocks
NCCL collectives are vulnerable to deadlocks since they in-
herently satisfy three out of the four individually necessary
and jointly sufficient conditions for a deadlock (except cir-
cular waiting): ❶ Mutual exclusion: GPU resources, e.g.,
streaming multiprocessors and shared memory [43], occu-
pied by one collective cannot be simultaneously used by
others. ❷ Hold and wait: In NCCL, the parts of a collec-
tive on different GPUs busy-wait until all peers are ready
while holding allocated resources. ❸ No preemption: There
is no practical official preemption support for GPUs, and the
GPU-preemption techniques in literature are not suitable for
collectives (see Sec. 7). Therefore, once an application causes
circular collective dependency, a deadlock occurs.

At the bottom library level, Fig. 1 shows the legal situations
and the basic deadlock situations of GPU collectives.
When an application invokes collectives in a consistent

order on each GPU, e.g., invoking collective B before A on
both GPU 0 and 1 (Fig. 1(a)), these collectives can execute
normally. CUDA stream [44] enables the parallel execution
of multiple collective kernels when resources are sufficient.
When an application invokes collectives in different orders
on each participating GPU, if these collectives are issued to
different streams, and the kernels in all these streams can be
scheduled for execution due to sufficient resources (Fig. 1(b)),
these collectives can execute normally.
Fig. 1(c) and 1(d) summarize three basic GPU collective

deadlock situations with circular collective dependency at
bottom library level. ❶ Single Queue: For the single queue
programming model where collectives are issued in a single
stream on each GPU, the disordered invocation of collectives
on different GPUs leads to circular collective dependency
and a deadlock (Fig. 1(c)). ❷ Resource Depletion: When
collectives are issued to different streams, but resources are
insufficient, the disordered invocation of collectives on dif-
ferent GPUs leads to the deadlock situation similar to Sin-
gle Queue (Fig. 1(c)). ❸ GPU Synchronization Related:
GPU synchronization is categorized into explicit and implicit
types [43]. Explicit synchronization involves cudaDeviceSyn-
chronize() calls, while implicit synchronization includes GPU
default stream commands, page-locked host memory allo-
cation, and CPU-initiated GPU memory operations. GPU
synchronization operations block and suspend a GPU until
all kernels in all streams of the GPU complete. Therefore,
GPU synchronization introduces the dependency where idle
resources cannot be allocated to collectives invoked after
the GPU synchronization, until all allocated resources are re-
leased by prior collectives after their completion. As shown
in Fig. 1(d), when two GPUs invoke two collectives in oppo-
site orders, and both issue GPU synchronization after invok-
ing one, the disordered collective invocation and the resource
dependency introduced by GPU synchronization together
lead to circular collective dependency and a deadlock.
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Table 1. Configurations and Deadlock Ratios in Simulation Based Analysis.

3D Grouping Policy Free Grouping Policy
TP, DP, PP
Group Size #Group #GPU

#Collective /
TP, DP Group

Disorder
Prob.

Sync.
Prob.

Deadlock
Ratio #Group #GPU

#Collective /
Group

Disorder
Prob.

Sync.
Prob.

Deadlock
Ratio

Single-
Queue
Model

4, 4, 4 32 64 400, 1200 1e-7 - 1.10% 1 8 161 1e-5 - 1.21%
1e-6 - 9.97% 32 64 400 or 1200 1e-6 - 0.98%

8, 6, 64 896 3072 400, 1200 1e-9 - 0.47% 1e-5 - 9.45%
1e-8 - 3.59% 32 128 400 or 1200 1e-6 - 1.72%

Sync.
Model

4, 4, 4 32 64 400, 1200
2e-3 4e-3 0.68%

32 64 400 or 1200
4e-6 4e-5 0.81%

4e-3 4e-3 1.38% 4e-5 4e-5 1.16%
4e-3 2e-3 0.32% 4e-5 8e-5 6.56%

800, 2400 4e-3 4e-3 2.56% 800 or 2400 4e-5 4e-5 6.94%
8, 6, 64 896 3072 400, 1200 8e-4 8e-4 1.56% 32 128 400 or 1200 4e-5 4e-5 2.34%

Disordered collective invocation across GPUs is a neces-
sary condition for circular collective dependency and dead-
locks, with GPU synchronization exacerbating the risk of
circular waiting among collectives. The root cause of the
disordered collective invocation and the issuance of GPU
synchronization originates with the application. In applica-
tions where collectives lack data dependency, these collec-
tives can be invoked in varying orders across GPUs. GPU
synchronization, independent of these collectives, can also
be issued whenever needed on corresponding GPUs.

2.4 Simulation Based Analysis

2.4.1 Deadlock Simulator We develop a simulator to
quantitatively analyze how disordered collective invocation
and GPU synchronization affect GPU collective deadlocks.
Our simulation is driven by real-world distributed DNN

training practices and profiling [41, 59, 66]. GPUs are or-
ganized into different groups. Each group has a separate
collective list for its GPUs to invoke and execute. A single
GPU can belong to multiple groups, which means that the
collectives a GPU will invoke and execute are the union of
the collectives from all the groups the GPU belongs to. A col-
lective has three states on each GPU: invoked, executing, and
successful. A collective becomes successful when it reaches
the executing state on all GPUs in its corresponding group.
The condition for a collective’s transition from invoked to
executing state is related to the deadlock decision model.
We study two deadlock decision models in the simulator

based on the basic deadlock situations discussed in Sec. 2.3:
• Single-queue model. A collective on a GPU transitions
to the executing state if there is no executing or invoked
collectives before it. Each GPU is restricted to having only
one executing collective at a time.
• Synchronization model. A GPU may randomly initiates
synchronization operations that suspends it. A collective on
a GPU transitions to the executing state if it is invoked be-
fore the GPU is suspended. A GPU ends suspension when all
executing collectives before the synchronization transition
to successful, or if there are no executing collectives before
the synchronization. Each GPU can maintain an unlimited

GPU 0 A0 B0 C0 D0 E0

GPU 1 B1 C1 D1A1 E1

GPU 2 A2 C2 D2B2 E2

GPU 3 A3 B3 D3 C3 E3

Figure 2. Example Collective States in the Synchro-
nization Model. A, B, C, D, and E are five collectives. Ai
represents the part of collective A on GPU i. The left green
box indicates a collective is executing on a GPU, and each
right yellow box indicates an invoked collective. The middle
red bar represents the synchronization that suspends a GPU.

number of executing collectives. Given the varying total re-
sources of different GPU models and the diverse resource
needs of collectives, the simulator employs an idealized infi-
nite resource assumption to simplify these complexities.
In both deadlock decision models, the simulator checks

for cycles in the dependency graph to determine the presence
of a deadlock, after each collective invocation and synchro-
nization issuance. The nodes of the dependency graph are
collective parts on GPUs. The graph includes two types of
directed dependency edges: ❶ an executing collective on one
GPU points to all its invoked counterparts on other GPUs,
e.g., D3->D0, D3->D1, and D3->D2 in Fig. 2; ❷ an invoked
collective on a GPU points to all executing collectives on
the same GPU, e.g., D0->A0, D0->B0, and D0->C0 in Fig. 2.
One of the cycles in the dependency graph corresponding to
Fig. 2 is A0->A1->B1->B2->C2->C3->D3->D0->A0.

The simulation models key behaviors related to GPU col-
lective deadlocks: (1) the disorder probability specifies the
probability of disordered collective invocations by GPUs; (2)
the synchronization probability determines the probability
of issuing synchronization operations.
We study two typical GPU grouping policies for dis-

tributed DNN training:
• 3D grouping policy. As shown in Fig. 3, GPUs are orga-
nized according to the 3D grouping scheme in 3D-hybrid
parallel distributed DNN training [41, 59], where GPUs hold-
ing the same DNN model part in different TP groups form
a DP group within each PP group. The configuration file
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Tensor Parallel Group 0
GPU-0 · · ·

Pipeline Parallel Group 0

GPU-3
Tensor Parallel Group 1
GPU-4 · · · GPU-7

Data Parallel Group 0 Data Parallel Group 3· · ·

Figure 3. Example Grouping of GPUs in 4-way Tensor, 2-
way Data, and 4-way Pipeline Hybrid Parallelism [41, 59].

specifies the sizes of the TP, DP, and PP groups, along with
the number of collectives in the TP and DP groups.
• Free grouping policy. The configuration file directly spec-
ifies the total number of groups, as well as the GPU lists and
the number of collectives of each group.
The simulator’s input is synthesized event sequences for

each GPU. These sequences, consisting of collective invoca-
tion events and GPU synchronization events, are generated
based on disorder probability, synchronization probability,
and GPU grouping. The simulator transitions the collective
state according to currently submitted events and determines
if deadlocks occur using the deadlock decision model.

2.4.2 Simulation Setup Table 1 summarizes the configu-
rations and deadlock ratios of the simulation experiments.
• The (8, 6, 64)-3D grouping case is inspired by the training
configuration of GPT-3 [41]. The (1, 8)-free grouping case
simulates a data parallel scenario.
• In 3D grouping, each GPU invokes collectives from two
groups. In contrast, in the (32, 64)-free grouping case, which
mirrors the (4, 4, 4)-3D grouping in total groups and GPUs,
GPUs variably receive collectives from one to five groups.
• In the (32, 64)-free grouping case, 28 groups have three
GPUs each, and four groups have eight GPUs each. The (32,
128)-free grouping case increases each group by two GPUs.
• In the free grouping policy, "400 or 1200" means 50% of
groups have 400 collectives and the other 50% have 1200
collectives. "800 or 2400" preserves this distribution.
• A round is defined as all collectives are successful or the
simulation runs until a deadlock arises. For all the configu-
rations, deadlock ratios are calculated from 32,000 rounds.

2.4.3 Result Analysis From Table 1, we can conclude:
❶ Extremely low disorder and synchronization probabil-
ities can lead to prohibitively high deadlock risks. In the
single-queue model, the deadlock ratio is up to six orders
of magnitude higher than the disorder probability (0.49% vs.
1e-9). In the synchronization model, the deadlock ratio is up
to three orders of magnitude higher than the disorder and
synchronization probability (6.94% vs. 4e-5).
❷ The deadlock ratio is positively correlated with the disor-
der probability and the synchronization probability.
❸ The synchronization model is more sensitive to the syn-
chronization probability than to the disorder probability. For

example, in the (32, 64)-free grouping case, while increasing
the disorder probability tenfold (from 4e-6 to 4e-5) raises
the deadlock ratio by 42%, doubling the synchronization
probability (from 4e-5 to 8e-5) dramatically increases the
deadlock ratio by 468%. This is because GPU synchroniza-
tion introduces the dependency of idle resources on allocated
resources, which facilitates the emergence of circular wait-
ing among disordered collectives, and results in deadlocks
even with ample resources (Fig.1(d) vs. Fig.1(b)).
❹ The deadlock ratio correlates positively with the total
number of GPUs and the total number of planned collectives.
❺ In the synchronization model, the deadlock ratio is pos-
itively correlated with the group overlapping degree, i.e.,
the number of groups a GPU belongs to, which indicates
the complexity of distributed DNN training scenarios. For
example, the (32, 64)-free case employs disorder and syn-
chronization probabilities two orders of magnitude lower
than the (4, 4, 4)-3D case (4e-5 vs. 4e-3), yet their reported
deadlock ratios are similar (1.16% vs. 1.38%).
Sec. 6.1 demonstrates that in a real-world environment,

when both disorder and synchronization probabilities are
engineered to reach 100%, NCCL exhibits a 100% deadlock
ratio, whereas DFCCL does not encounter any deadlocks.

2.5 Existing Methods to Deal With Deadlocks
Existing methods prevent circular collective dependency
by ensuring that collectives are invoked in a consistent or-
der across GPUs, without managing GPU synchronization.
Most approaches achieve this through additional CPU or-
chestration tightly coupled with specific parallel training
techniques. Manual hardcoding is currently the only viable
solution when combining PP with other parallel techniques.
Different CPU coordination strategies are employed for

data parallelism. ❶ Horovod [56] presents the dynamic cen-
tralized coordinating approach. The Horovod central coordi-
nator gathers collectives’ readiness from each GPU during
runtime and broadcasts a list of collectives ready on all GPUs,
allowing GPUs to start the all-reduces in the list order. ❷
BytePS [29] requires centralized coordination prior to in-
voking collectives among intra-node GPUs. ❸ KungFu [38]
determines the predominant GPU collective calling order in
the initial training step via gather and broadcast operations.
Subsequently, decentralized schedulers enforce this order
across all GPUs. ❹ OneFlow [66] introduces a static-sorting
based scheduling approach. Its compiler automatically con-
structs task graphs for all GPUs, sorting collectives based
on each graph’s topological order. During runtime, GPUs
initiate collectives following these pre-sorted sequences.
Horovod, BytePS, and KungFu are incapable of orches-

trating all collectives in 3D-hybrid parallelism. ❶ Megatron-
LM [41, 59] introduces manual hardcoding for hybrid paral-
lelism by manually and meticulously arranging each GPU’s
collectives related to different groups (Fig. 3). ❷ OneFlow
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Figure 4. Overview of DFCCL. A, B, C, and D denote four
registered collectives. A is complete; B and C are invoked;
and D has not been invoked yet.

follows the manual hardcoding scheme when combining PP
with other parallel techniques.

2.5.1 Limitations of Existing Methods Case-by-case
collective orchestration at the application level is neither
effective nor general in preventing GPU collective deadlocks.

Manual hardcoding is indeed an expensive ad hoc method.
The existing manual orchestration implementation demands
extensive development and verification by experienced engi-
neers, and is closely tied to hybrid parallelism characteristics.
As distributed training patterns grow more complex and

dynamic, it is becoming increasingly challenging for engi-
neers to manually orchestrate collectives at the application
level, ensuring that GPUs invoke them in the consistent order
under all runtime circumstances. Pathways [6, 11] presents
a heterogeneous and dynamic distributed training paradigm
less symmetrical and more irregular than 3D-hybrid par-
allelism1. This paradigm is conceptually similar to the (32,
64)-free grouping case in Sec. 2.4.2. Table 1 shows, in the
(32, 64)-free grouping case, disorder and synchronization
probabilities of no more than 0.004% yield a deadlock risk
near 7%. Besides, Sec. 2.4.3 shows deadlocks are more sen-
sitive to GPU synchronization than to disordered collective
invocation. This implies that in dynamic, complex scenarios,
as long as the disorder probability is not zero, laborious col-
lective orchestration can be futile in preventing deadlocks
due to uncontrolled synchronization fluctuations, e.g., more
frequent GPU memory allocations.

3 Overview
DFCCL is a GPU collective communication library that pre-
vents deadlock through preemption, and maintains high per-
formance with efficient execution and scheduling.

3.1 DFCCL Components and Collective Life Cycle
DFCCL consists of GPU and CPU parts, as shown in Fig. 4.
On each GPU, the daemon kernel (Sec. 4), DFCCL’s core com-
ponent, handles execution, preemption, and scheduling for
multiple collectives. DFCCL’s CPU component provides user-
friendly APIs and manages asynchronous, non-blocking re-
quest submitting and completion notifying based on the sub-
mission queue (SQ) and completion queue (CQ). Each GPU’s
daemon kernel corresponds to a separate SQ & CQ.

Fig. 4 identifies a collective’s life cycle in DFCCL through
numerical labels. ❶, ❷: The collective invoker inserts a sub-
mission queue element (SQE) into the SQ, and records a (collec-
tive ID, callback) pair in the callback map. ❸, ❹: The daemon
kernel periodically checks the SQ, fetches and parses SQEs,
and executes the requested collectives. ❺: The daemon ker-
nel inserts a completion queue entry (CQE) for each completed
collective into the CQ. ❻, ❼: The poller thread monitors the
CQ. Once the poller finds a CQE, it executes the callback tied
to the collective, which notifies the invoker of the collective’s
completion in the user-defined way.
Using callbacks for collectives’ asynchronous invocation

is a common programming practice [51, 66]. DFCCL’s design
offers a flat learning curve.

3.2 APIs of DFCCL
Listing 1 provides a list of DFCCL’s APIs. dfcclInit initializes
the rank context of a GPU. dfcclDestroy destroys the rank
context and releases resources. dfcclRegister* (“*” repre-
sents a specific collective) registers a collective and prepares
corresponding data structures for a collective on the specified
GPU. Every registered collective has a unique ID. dfcclRun*
invokes a registered collective based on the ID and records a
user-defined callback corresponded to the collective.
In DFCCL, a collective is registered once with dfcclReg-

ister* and can then be invoked repeatedly as needed using
dfcclRun*. DFCCL also allows dynamic registration of new
collectives during runtime.
The communicator manages the resources for inter-GPU

data transfer during collective execution. DFCCL maintains
a communicator pool transparent to users, automatically
creating and allocating communicators for collectives.

1Pathways relies on the centralized scheduler and a closed-source dataflow
system called PLAQUE to ensure that all participating devices invoke col-
lectives in a consistent order. The specific implementation details are not
publicly available. However, as described in its paper, Pathways also relies
on additional CPU orchestration to prevent deadlocks in device collectives,
making it fundamentally indistinguishable from existing approaches.
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ret_t dfcclInit(rankCtx_t* rankCtx , int rank);
ret_t dfcclRegisterAllReduce(size_t count , type_t

type , redOp_t op, int collId , devSet_t devSet ,
int priority , rankCtx_t rankCtx);

ret_t dfcclRunAllReduce(const void* sendbuff , void
* recvbuff , int collId , func_t callback , void*
callbackArgs , rankCtx_t rankCtx);

ret_t dfcclDestroy(rankCtx_t rankCtx);

Listing 1. APIs of DFCCL. Take all-reduce as an example.

DFCCL can be seamlessly integrated with existing dis-
tributed deep learning frameworks, e.g, PyTorch [51], One-
Flow [66], TensorFlow [1], by appropriately substituting
their calls to the NCCL APIs with calls to the DFCCL APIs.

3.3 Benefits of DFCCL
DFCCL’s daemon kernel integrates preemptive scheduling
on GPU, fundamentally breaking GPU collectives’ inher-
ent susceptibility to deadlocks. This eliminates the need for
CPU-based coordination between user-facing interfaces and
DFCCL’s library-level APIs (e.g., dfcclRunAllReduce). Embed-
ding scheduling logic in a daemon kernel rather than relying
on CPU orchestration is novel and has the potential to be
extrapolated to other CPU-GPU paradigms.
DFCCL achieves three key objectives simultaneously: 1)

the APIs of the underlying collective communication library
can be directly called concurrently and asynchronously; 2)
guaranteeing high performance; and 3) maintaining inde-
pendence from specific parallel training techniques, thus
ensuring wide applicability. The combined realization of
these three objectives represents an open research challenge
that existing work has not addressed.
DFCCL vs. NCCL The methodology difference between

DFCCL and NCCL includes two main aspects.
❶ DFCCL manages the execution, preemption, and sched-
uling for an arbitrary number of collectives submitted dy-
namically in a single daemon kernel. In contrast, each NCCL
kernel is dedicated to one or a few predetermined collectives,
relying entirely on CUDA’s underlying scheduling.
❷ DFCCL offers SQ, CQ, and callback management for asyn-
chronous request submitting and completion notifying, un-
like NCCL, which requires additional mechanisms, e.g., cud-
aEvent [43], to verify collective completion asynchronously.

4 Daemon Kernel
In this section, we first present the preemption chances for
GPU collectives. Next, we present collective preemption and
scheduling in the daemon kernel. Then, we present the dae-
mon kernel’s voluntary quitting and event-driven starting.
Finally, we analyze its correctness and performance.

GPURecv
Connector

Send
Connector

Send Buffer

Recv Buffer

Figure 5. Buffers Used in GPU Collectives.

4.1 Preemption Chance of GPU Collectives
The preemption opportunity for common GPU collectives
(all-reduce, all-gather, reduce-scatter, reduce, and broadcast)
arises because they are all composed of a subset of the same
group of primitives [17, 46]. In a collective, GPUs are orga-
nized into a specific logical topology, with eachGPU assigned
a primitive sequence based on its position within this topol-
ogy. To facilitate processing, input data for a collective are
divided into regular chunks. GPUs execute a collective by
performing its primitive sequence a certain number of times
to process all the data chunks.

Every primitive is a fusion of basic actions, i.e., send, recv,
reduce, and copy, which describe the basic operations on the
four buffers used in collectives as shown in Fig. 5. send/recv
buffers are local buffers for input and output. send/recv con-
nectors contain lock-free ring buffers used for inter-GPU
data transfer, managed by the communicator. The send action
writes data to the send connector, while recv reads data from
the recv connector. The reduce action reduces data from the
send buffer and the recv connector with a specified reducing
function. The copy action puts data into the recv buffer. Each
primitive includes one or both of the send or recv actions.
Based on the presence of send and recv actions, a primitive
busy-waits until the send connector is writable and/or the
recv connector is readable before progressing.

By limiting a primitive’s wait time, we can abort its execu-
tion, thereby preempting the associated collective. Moreover,
the persistent visibility of written data enables individual
GPUs to independently preempt collectives in a decentral-
ized dynamic manner, without explicit coordination among
GPUs. Once a GPU writes data to the send connector for
a collective’s primitive, the data remain visible to the peer
GPU. The visibility persists even if the collective part on
this GPU is preempted after writing, or the corresponding
collective part on the peer GPU is preempted before writing.

4.2 Collective Execution and Preemption
Fig. 6 demonstrates key components of the daemon kernel
and identifies operations related to collective execution and
preemption through numerical labels.
❶: The daemon kernel fetches and parses SQEs, and main-
tains collectives in the task queue in the shared memory [43].
❷: The daemon kernel traverses the task queue and schedules
a collective, details of scheduling are discussed in Sec. 4.3.
❸: The daemon kernel executes the primitive sequence of the
scheduled collective in a two-phase blocking manner [20, 49].
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Figure 6. Daemon Kernel of DFCCL. Collective B and C
are invoked, and B is scheduled currently.

The daemon kernel assigns spin thresholds to the collective’s
primitives to limit the busy-waiting time. During execution,
a primitive first polls up to spin-threshold times to check if
the condition required by the send and/or recv action is met.
If the primitive cannot execute after polling spin-threshold
times, it is aborted, and the associated collective is deemed
to be stuck and then preempted on this GPU.
❹, ❺: The context of the preempted collective is saved in the
collective context buffer in the global memory [43], and the
daemon kernel loads the next scheduled collective’s context
into the active context slot in the shared memory. The context
of collectives consists of dynamic context and static context.
The dynamic context includes changing states during col-
lective execution, e.g., the current data chunk ID and the
aborted primitive’s ID. The static context of a collective con-
tains its constant configuration, such as local and connector
buffers’ addresses shown in Fig.5, and its meta information
including the number of GPUs executing the collective, the
rank of the current GPU among participants, and the com-
position of the collective’s primitive sequence, etc. Before
executing a collective, the daemon kernel loads both its dy-
namic and static context, yet only saving its dynamic context
after preemption, as the static context remains unchanged
during collective execution. However, the collective’s static
context can change across multiple calls, e.g., the addresses
of send buffer and recv buffer may vary.
❻: The daemon kernel inserts a CQE into the CQ for the
completed collective.

4.3 Adaptive Collective Scheduling
Algorithm 1 shows DFCCL’s scheduling process. DFCCL’s
daemon kernel schedules collectives via the adaptive stick-
iness adjustment scheme, which enables priority assigning
and decentralized dynamic gang-scheduling for collectives.

The stickiness of a collective indicates the daemon kernel’s
willingness to wait for its progress. A collective’s stickiness
is reflected in its position in the task queue and the spin
thresholds assigned to its primitives. The unified stickiness
adjustment mechanism independently controls both aspects
on each GPU, supporting various policies. All the GPUs

Algorithm 1 Scheduling Process of DFCCL.
with Pointer2SQ, SpinThreshold, PrimitiveExecuteStatus, and

Pointer2CQ in shared memory
1: while not FinallyExit() do
2: FetchSQE&SortTaskQueueByPriority()
3: SetInitialSpinThreshold()
4: for collective ∈ task queue do
5: LoadCollectiveContext()
6: for primitive ∈ collective do
7: ExecutePrimitive()
8: if PrimitiveSuccess() then
9: AdaptivelyAdjustSpinThreshold()
10: else
11: PreemptCollective()
12: SaveCollectiveContext()
13: break
14: if CollectiveSuccess() then
15: SendCQE()

adopt the same stickiness adjustment policy, which is fur-
ther divided into an order adjusting policy and a spin threshold
adjusting policy. The order adjusting policy controls the fre-
quency of fetching SQEs from the SQ and the ordering of
collectives in the task queue, according to user-specified pri-
orities (line 2). The spin threshold adjusting policy enables
each GPU to negotiate in a decentralized dynamic manner
to execute the same collective (line 3 and line 9).
When no specific priority is assigned to collectives, the

daemon kernel adopts a FIFO-ordering policy; otherwise, it
employs a priority-based ordering policy.
• FIFO Ordering. This policy aims to empty the task queue
quickly. Under this policy, the daemon kernel fetches an SQE
from the SQ when the task queue is empty or all collectives
in the queue cannot progress for a while. The newly fetched
collective is put at the end of the task queue.
• Priority-based Ordering. This policy optimizes perfor-
mance for applications’ special scheduling needs. Under this
policy, the daemon kernel checks the SQmore frequently and
sorts the task queue by priority. A practical priority scheme
is assigning higher priority to collectives arriving later to
enable the overlap of communication and computation in
data parallelism [5, 35, 52].
When a collective is preempted, it remains at its original

task queue position, and the daemon kernel schedules the
next collective in the task queue for execution.
DFCCL’s automated, adaptive spin threshold adjusting

policy, which enables GPUs to negotiate in a decentralized
dynamic manner to achieve gang-scheduling, plays a pivotal
role in forestalling inter-GPU conflicts. This policy instructs
the daemon kernel to assign the largest initial spin threshold
to the collective at the front of the task queue. Each subse-
quent collective receives a progressively lower initial spin
threshold (line 3). During execution, if the daemon kernel de-
tects that a primitive of a collective executes successfully, it
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raises the spin threshold of the succeeding primitives of that
collective (line 9), which increases the probability that all
GPUs simultaneously execute or wait for the same collective,
resulting in de facto gang-scheduling.

DFCCL uses automated profiling to set suitable parameters,
e.g., the initial spin threshold and voluntary quitting period
(Sec. 4.4), to achieve the Pareto-optimal (Sec. 4.5).

4.4 Voluntary Quitting and Event-driven Starting
The daemon kernel voluntarily quits when it cannot fetch
new SQEs for a certain period and the task queue is either
empty or contains only collectives that cannot progress. The
daemon kernel voluntarily quits for two reasons:
• To release GPU resources for other tasks when it’s idle.
•To prevent deadlocks related to GPU synchronization. Once
the daemon kernel quits, the blocking GPU synchronization
can complete, thus allowing stuck collectives to proceed.

DFCCL tries to start the daemon kernel upon SQE insertion
to the SQ or when the inserted CQEs are fewer than SQEs.
The daemon kernel is initially launched upon the insertion
of the first SQE. dfcclDestroy inserts an exiting SQE into the
SQ, making the daemon kernel finally exit after reading it.

4.5 Correctness and Performance Analysis
Correctness. The daemon kernel ensures the correctness
of dynamic, decentralized preempting and restoring of col-
lectives, by preserving the context integrity of preempted,
uncompleted collectives. Saving and loading the preempted
collective’s dynamic context ensures it restarts from the pre-
vious stopping point, without under- or re-transmitting data.
The daemon kernel prevents other collectives from using pre-
empted, uncompleted collective’s connectors, ensuring the
correct exploitation of the data visibility (Sec. 4.1). Besides,
the daemon kernel’s voluntary quitting and restarting do not
corrupt preempted collectives’ context in global memory.
Performance Modeling. The overheads 𝑇 in collective

execution includes the busy-waiting time (𝑡 [𝑠𝑝𝑖𝑛]), the con-
text switch time (𝑡 [𝑠𝑤𝑖𝑡𝑐ℎ]), and the waiting time for sched-
uling influenced by task queue length (𝑡 [𝑞_𝑙𝑒𝑛]).

𝑇 = 𝑡 [𝑠𝑝𝑖𝑛] + 𝑡 [𝑠𝑤𝑖𝑡𝑐ℎ] + 𝑡 [𝑞_𝑙𝑒𝑛] (1)

𝑡 [𝑠𝑝𝑖𝑛] correlates positively with the spin threshold (𝑁𝑠𝑝𝑖𝑛).
Both 𝑡 [𝑠𝑤𝑖𝑡𝑐ℎ] and 𝑡 [𝑞_𝑙𝑒𝑛] are negatively correlated with
𝑁𝑠𝑝𝑖𝑛 : a larger 𝑁𝑠𝑝𝑖𝑛 increases the probability that a collec-
tive successfully waits for the same collective’s scheduling
on peer GPUs, so it experiences fewer preemptions and con-
text switches, and completes faster, thereby reducing the
task queue length. Therefore, we can assess the correlation
between the overheads 𝑇 and the spin threshold 𝑁𝑠𝑝𝑖𝑛 via

expression 2. In DFCCL, adaptively adjusting the spin thresh-
old, as a uniform approach, is used to approximate a Pareto-
optimal [18] for overheads in various scenarios.

𝑇 ∼ 𝑁𝑠𝑝𝑖𝑛 + 1
𝑁𝑠𝑝𝑖𝑛

(2)

4.6 Discussions
DFCCL introduces at least two innovations for deadlock-free
GPU collectives:❶A daemon kernel that achieves two-phase
blocking execution of GPU collectives on the hardware plat-
form without preemption support, without altering the un-
derlying GPU task scheduling mechanism. ❷ A collective
preemption and scheduling co-design that enables decen-
tralized, dynamic collaboration of multiple GPUs without
explicit coordination among them, enhancing traditional
timer-based context switch in preemptive scheduling [4].

During the two-phase blocking execution, DFCCL can pre-
empt a collective at any time by interrupting any primitive.
The specific method of interrupting a primitive involves as-
signing an appropriate spin threshold before its execution,
causing it to yield if no progress is made within the spin
threshold. In contrast, in NCCL, a primitive busy-waits in-
definitely while holding resources.

5 Implementation and Optimizations
Implementation Details of the Daemon Kernel We tailor
the daemon kernel to the block-thread programming model
of CUDA [43]. A CUDA kernel comprises multiple parallel
threads executing the same code. The threads are grouped
into blocks. All threads of a block reside in the same stream-
ing multiprocessor (SM) and have access to the SM’s limited
shared memory. Equally-shaped blocks further form a grid.
Each collective is assigned a specific grid and block sizes.
The daemon kernel is launched using the largest grid and
block sizes among all registered collectives.
Threads within the same block synchronize easily, while

those in different blocks typically run asynchronously. When
the daemon kernel executes collectives requiring different
numbers of blocks simultaneously, its higher-index blocks
can execute a different collective than lower-index blocks.
The number of active threads executing a collective’s prim-
itives inside a block depends on the block size assigned to
the collective. The daemon kernel makes extra threads wait.
Each block independently decides when to quit voluntarily.
The daemon kernel’s reads from the SQ and writes to

the CQ are implemented to accommodate asynchronous
block execution. The SQ is a single-producer-multi-consumer
(SPMC) ring buffer, allowing only one CPU thread to write
an SQE at a time. All blocks of the daemon kernel read the
SQE.When a block reads a new SQE, it atomically increases a
counter inside the SQE. If a block finds the increased counter
of an SQE equals the daemon kernel’s grid size, it marks
the corresponding SQ slot as writable. A block executes a
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collective only if its index is lower than the collective’s as-
signed grid size. The CQ is amulti-producer-single-consumer
(MPSC) ring buffer. Only one poller thread on the CPU reads
CQEs. The daemon kernel maintains a completion counter
for each collective in global memory. A block atomically in-
creases the collective’s completion counter when completing
its part of a collective. If a block finds the increased com-
pletion counter of a collective equals its assigned grid size,
the block writes a CQE to the CQ and resets the collective’s
completion counter. Multiple blocks can concurrently write
CQEs into the CQ for different completed collectives.
The CPU & GPU cache-coherence mechanism is trans-

parent to SQ/CQ management, and we use memory fences
for memory consistency when necessary. We use CUDA’s
atomic APIs that ensure transparent atomic read/write oper-
ations between GPUs and DRAM, as well as within a GPU.
Optimizing CQ. The SQ and CQ reside in page-locked

host memory. We reduce host-memory-related reads, writes
and memory fences when writing CQEs to decrease CQE-
writing latency by leveraging CUDA’s 64-bit atomic opera-
tions. The vanilla ring-buffer-based CQ requires at least
five host-memory-related operations to prevent blocks from
inserting CQEs for different collectives into the same CQ slot.
The vanilla ring-buffer-based CQ also requires a memory
fence between writing the CQE and updating the CQ’s tail
to ensure memory consistency. The optimized ring-buffer-
based CQ uses exactly four host-memory-related operations
without fences by encapsulating the complete collective’s ID
and current tail in a single 64-bit atomic write. The poller
validates a CQE by comparing CQ’s head and the tail from
the 64-bit bitmap. We further develop an optimized CQ that
only requires at least a single CUDA atomicCAS_system op-
eration to write a CQE, abandoning the ring buffer semantics.
This optimized CQ is based on the observation that the CQE
only carries the complete collective’s ID. A block atomically
writes the ID into a writable slot in the CQ. The poller scans
the CQ, checking whether a slot contains a valid collective
ID and marking the slot writable after reading the collective
ID. SQ is implemented as a vanilla ring buffer because an
SQE contains more information than a 64-bit word can hold.
Reducing the Overheads of Context Switching. We

employ three methods to minimize context-switching over-
heads. ❶ The daemon kernel loads and saves the context in
parallel with multiple threads. We encapsulate the dynamic
and static context into 16-byte aligned structs to utilize the
16-byte load/store instructions. ❷ The daemon kernel uses
multiple active context slots in shared memory, managed
with a direct-mapped cache approach. ❸ The daemon kernel
employs a lazy-saving strategy, only saving the dynamic con-
text of a collective that has progressed before preemption.

Integrating DFCCL with Frameworks. We extend One-
Flow [66] as well as PyTorch [51] & Megatron-LM [30, 59]
to use DFCCL-based collectives. The integration with each

Table 2. Specifications of the Experimental Platforms.

Specification
Processor Intel Xeon Silver 4314 @ 2.40GHz (16 cores × 2 sockets)
DRAM 512GB @ 2666 MT/s
GPU NVIDIA GeForce RTX 3080 Ti 12GB × 8
NIC Mellanox MT28908 @ 56Gb/s

Processor Intel Xeon Silver 4314 @ 2.40GHz (16 cores × 2 sockets)
DRAM 512GB @ 2666 MT/s
GPU NVIDIA GeForce RTX 3090 24GB × 8
NIC Mellanox MT28908 @ 56Gb/s

Switch Mellanox SX6036 (36 full-duplex 56Gb/s ports)

framework requires approximately 1,000 lines of C++ code
to invoke proper DFCCL APIs.

6 Evaluation
In this section, we conduct experiments to verify DFCCL’s
deadlock prevention capability and measure its performance.
• Testbed. We conduct experiments on the platforms de-
tailed in Table 2, using Ubuntu 20.04 and CUDA 11.7. On the
dual-socket servers, GPUs 0-3 and GPUs 4-7 belong to two
separate PIX domains, and these two device groups reside
within the SYS domain. GPUs within each machine com-
municate via the Shared Memory (SHM) transports, while
inter-machine communication utilizes RDMA networking.
These machines are hereafter referred to as the 3080ti-server
and the 3090-server. The primitive sequences for collectives
are generated with Simple protocol and Ring algorithm [46].
• Benchmarks. ❶ Verifying DFCCL’s deadlock-prevention
capability. ❷ Measuring DFCCL’s workload-independent
overheads. ❸ Evaluating the bandwidth and latency of com-
monGPU collectives based onNCCLTests [42].❹ Evaluating
the performance of DNN training.
• Comparing Targets. We compare the bandwidth and la-
tency of collectives from DFCCL with those from NCCL [46].
To evaluate training performance, we conducted three sets
of comparative experiments: ❶ In data-parallel scenarios,
we compare ResNet50 [24] training throughput (#samples
consumed per second) with DFCCL versus that with NCCL
orchestrated by different CPU-based methods. The compar-
ing targets includeHorovod v0.28.1, KungFu v0.2.5, and static
sorting from OneFlow v0.8.1. ❷ To demonstrate DFCCL’s ap-
plicability and performance under various distributed train-
ing methods, we compare the training throughput of Vi-
sion Transformer (ViT) [19] in OneFlow v0.8.1 at different
scales and with different distributed training techniques. ❸
To showcase DFCCL’s performance in more popular and
recent scenarios, we compare the GPT-2 [26, 53] training
performance with DFCCL against that with manually orches-
trated NCCL in PyTorch v2.2.1 & Megatron-LM 23.06.
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6.1 DFCCL’s Deadlock-preventing Capability
We develop testing programs to demonstrate the deadlock-
preventing capability of DFCCL. The testing programs di-
rectly invoke GPU collectives and GPU synchronization op-
erations according to the basic GPU deadlock situations at
bottom library level discussed in Sec. 2.3.
• In the first program, eight GPUs, each using a unique ran-
dom launch order, invoke the same set of eight all-reduces
with buffer sizes from 256B to 1MB. Results on the 3090-
server show that, without a dedicated stickiness adjustment
policy, all GPUs successfully execute the eight DFCCL-based
all-reduces for 200 iterations. Approximately 18,000 preemp-
tions occur for each block on average.
• In the second program, we insert cudaDeviceSynchronize()
calls as GPU synchronization between all-reduces invoked
in different orders on eight GPUs. Results on the 3090-server
show that over 200 iterations, the daemon kernel on each
GPU voluntarily quits for 360 times on average, ensuring
successful execution of the DFCCL-based all-reduces.
NCCL’s deadlock ratio is 100% in the testing programs.
The testing programs are representative of GPU collective

deadlock situations that can happen during distributed DNN
training, because different characteristics at application level,
e.g., model type, training scale, and parallelism-type, do not
introduce other basic GPU collective deadlock situations at
bottom library level.

6.2 Workload-independent Overheads
Workload-independent overheads, which do not increase lin-
early with workload (buffer size), are divided into memory
overheads and time overheads. ❶ Workload-independent
memory overheads include shared memory for each block’s
task queue and active context slot, and global memory for
the collective context buffer and other related data structures.
❷ Workload-independent time overheads in DFCCL include
the time required for executing multiple collectives within
the daemon kernel, including loading and saving context.
DFCCL requires 13KB of shared memory and 4MB of

global memory per block to maintain the block-dedicated
task queue and collective context buffer for 1,000 collec-
tives. Another 11KB of global memory is needed to keep the
completion counters of collectives and other information
accessible to all blocks.

Fig. 7(a) illustrates the timeline of executing a collective in
the daemon kernel without preemptions. Fig. 7(b) illustrates
the SQE read time, the preparing overheads, and the CQE
write time when executing all-reduce on the 3090-server’s
eight GPUs. Fig. 7(c) shows the optimized CQ, detailed in
Sec. 5, reduces CQE write time from about 6.9 𝜇s to about
2.0 𝜇s. The context loading takes approximately 0.45 𝜇s, while
saving context requires about 0.05 𝜇s.

Read SQE Preparing Overheads Execute Primitives Write CQE

Parse SQE Load Ctx.

(a) TimeComposition for a Collective’s Execution in theDaemonKernel
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Figure 7. Workload-independent Time Overheads Analysis.

6.3 Bandwidth and Latency of Collectives
We rewrite the NCCL Tests [42] based on commit 8274cb4 to
evaluate the bandwidth and latency of DFCCL-based col-
lectives, and compare DFCCL with NCCL 2.12.12. Fig. 8
presents selected results. These results are obtained by aver-
aging three experiments, with five iterations each. DFCCL
achieves comparable algorithm bandwidth and latency to
NCCL across various scales and buffer sizes.

To further analyze DFCCL’s performance gains and over-
heads, we measure and compare the end-to-end latency and
core execution time of collectives in DFCCL and NCCL with
different buffer sizes. The results are shown in Fig. 9.
For DFCCL, the core execution time includes “prepar-

ing overheads” and “execute primitives” time, as shown in
Fig. 7(a). For NCCL, it is the execution time of the dedicated
kernel for a collective.

Fig. 9(a) indicates that with a small buffer, the end-to-end
latency of the collective from DFCCL is about 4 𝜇s higher
than that from NCCL, yet DFCCL’s core execution time is
shorter. Meanwhile, when dealing with a larger buffer, as
illustrated in Fig. 9(b), DFCCL’s end-to-end latency is about
3 𝜇s lower than NCCL’s, and the core execution time of
DFCCL is roughly 20 𝜇s shorter than that of NCCL.

The reduced core execution time of collectives in DFCCL
results from the fusion of collectives within the daemon
kernel, both spatially and temporally. In DFCCL, the daemon
kernel fuses concurrently invoked collectives and multiple
iterations of a single collective.

When a collective requires fewer primitives, its core execu-
tion time is shorter. This makes I/O latency amore significant
contributor to the collective’s end-to-end latency, and ren-
ders the core execution time savings in DFCCL insufficient to
offset its I/O latency, e.g., in Fig. 9(a) and when the buffer size
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Figure 9. Case Study: Comparing End-to-end Latency and
Core Execution Time of NCCL and DFCCL with Small and
Large Buffer Sizes on eight GPUs of the 3090-server.

is less than 64KB in Fig. 8(a). We will prioritize optimizing
DFCCL’s I/O handling scheme in future work.
Nonetheless, as the workload increases, the reduction in

core execution time achieved by DFCCL gradually compen-
sates for its I/O latency, ultimately leading to a decrease in
the overall end-to-end latency as shown in Fig. 8.

6.4 DNN Training Performance
Results in this section show that DFCCL, using a unified
on-GPU adaptive scheduling scheme, achieves training per-
formance on par with or exceeding NCCL, which requires
different CPU orchestration methods tailored to specific sce-
narios.DFCCL’s efficiency also relates to its ability to execute
deadlock-free collectives concurrently and asynchronously
without extra CPU coordination, and low overheads for dead-
lock identification and context switch. In the experiments,
we observe different GPUs launching collectives in various
orders when using DFCCL, and no deadlocks arise. The loss
convergence rate with DFCCL remains similar to NCCL.

6.4.1 Data Parallel ResNet50 Training Experiments are
conducted using eight GPUs on each of the 3080ti-server
and 3090-server. Per-GPU batch sizes are set to 48 and 96
for the 3080ti- and 3090-server, respectively. We report the
average training throughput over 200 iterations.
Fig. 10 illustrates that, the training throughput achieved

with DFCCL is comparable to that attained with statically
sorted NCCL in OneFlow, with improvements up to 1.2%.
DFCCL outperforms KungFu and Horovod by 20.4%-22.3%.
Case Study: Assessing the Impact of the Adaptive

Scheduling on Performance. Fig. 11 displays two sets of
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Figure 10. Average Throughput of Training ResNet50 with
Data Parallelism for 200 Iterations.

statistical data from a ResNet50 training iteration with four
GPUs on the 3090-server: the number of context switches
and task queue lengths on different GPUs. The X-axis of the
figures in Fig. 11 represents IDs of the collectives used in
ResNet50 training. These IDs are displayed in the invocation
order on each GPU. Fig. 11(a) and Fig. 11(c) display the num-
ber of context switches of each collective, i.e., the number
of times the collective is preempted before its completion in
the iteration. Meanwhile, Fig. 11(b) and Fig. 11(d) illustrate
the task queue length after the daemon kernel reads the SQE
of the corresponding collective. The context switch and task
queue length on GPU 1 & 3 is similar to that on GPU 0.
The spikes in Fig. 11 are due to a naive spin threshold

adjustment policy, where each collective’s spin threshold is
fixed at 10,000 and does not adaptively change. During the
backward pass of DP, collectives are invoked in bursts. The
scenario in Fig. 11 occurs when GPU 2 slightly delays issuing
collectives, while the other three GPUs aggressively fetch
new SQEs because all fetched collectives fail to progress. As a
result, collectives accumulate in the task queues of the three
GPUs, and collectives fetched earlier are preempted multiple
times. Such a situation causes the training throughput to
drop from over 500 to less than 100.

By applying the adaptive spin threshold adjusting policy,
which allocates a larger initial spin threshold (100,000) via
profiling for the collective at the front of the task queue, and
utilizes a twentyfold-greater spin threshold after primitive
success, DFCCL eliminates the spike in Fig. 11, and maintains
high training throughput by achieving gang-scheduling.
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Figure 11. Statistical Data for Assessing the Impact of the
Adaptive Scheduling on Performance.
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Figure 12. Throughput for Training ViT Using OneFlow on
3090-Servers (Higher is Better).

6.4.2 Distributed ViT Training Fig. 12 shows the ViT
model’s training throughput under various distributed train-
ing techniques. Each iteration reports the average through-
put from the start to the current iteration [64]. Fig.12(a)-12(c)
employ the base ViT configuration, while Fig.12(d) utilizes
the large ViT configuration. The microbatch size is 128. Ex-
periments use eight GPUs on a single 3090-server (Fig. 12(a)-
12(b)), and 16 GPUs across two 3090-servers (Fig. 12(c)-12(d)).

Results in Fig. 12 show that DFCCL efficiently provides
the required collectives for various parallel DNN training
methods. Compared to NCCL statically sorted or manually
orchestrated by OneFlow, DFCCL delivers comparable per-
formance. In Fig. 12(a), DFCCL exceeds NCCL by up to 8.6%
and maintains a gap within 7.4%. In other experiments, the
difference between DFCCL and NCCL falls within ±3%.

6.4.3 Distributed GPT-2 Training Fig. 13 shows the per-
iteration training time of GPT-2 [26, 53] under 3D-hybrid
parallelism with Megatron-LM & PyTorch. The microbatch
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Figure 13. Time Per Iteration for Training GPT-2 Using
PyTorch & Megatron-LM on 3090-Servers (Lower is Better).

size is 18. Results demonstrate that DFCCL provides compa-
rable training performance to NCCL that is manually orches-
trated by Megatron-LM & PyTorch, exhibiting performance
differences within ±4%. Furthermore, DFCCL achieves train-
ing stability comparable to NCCL. On a single 3090-server,
DFCCL exhibits a 1.4% coefficient of variation in per-iteration
training time over 200 iterations, compared to NCCL’s 1.5%.
When scaling to 16 GPUs across two 3090-servers, the coef-
ficient of variation for per-iteration training time remains
comparable, with 4.3% for DFCCL and 3.9% for NCCL.

7 Related Work
Collective Scheduling. Some collective scheduling work
aims to overlap communication and computation. Posei-
don [67], TicTac [23], P3 [28] are proposed in the context of
parameter-server-based [34] data parallelism, and the core
insights are applied to all-reduce-based data parallelism. Po-
seidon [67] proposes wait-free backpropagation, synchroniz-
ing gradients after each layer rather than a whole iteration.
TicTac [23] adjusts gradient synchronization order so that
the next iteration can launch earlier. P3 [28] (priority-based
parameter propagation) slices parameters into finer granular-
ity, allowing synchronization of higher-priority parameters
to preempt that of lower priority. Bytescheduler [52] applies
a similar idea to both parameter server and all-reduce archi-
tectures, and introduces an approach to auto-tuning slice
size. PACE [5] preemptively schedules segmented all-reduce
kernels based on the directed acyclic graph (DAG) of DNN.
PyTorch Distributed [35] initiates all-reduce earlier than the
end of the local backward pass to overlap computation with
communication. CoCoNet [27] fuses split all-reduce with the
computation consuming its results and overlaps the fused
kernels. DFCCL can support the above scheduling policies.
Collective Optimization. Blueconnect [10] decomposes an
all-reduce to many parallelizable reduce-scatters and all-
gathers to adapt to network topology. BLink [62] proposes a
heuristic spanning tree packing algorithm to optimize col-
lective primitives. PLink [37] exploits the hierarchical net-
work topology to construct a logical topology for collec-
tives. SCCL [8] solves an integer programming encoding
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to achieve the Pareto-frontier of latency- and bandwidth-
optimal algorithms in a single machine. TACCL [58] synthe-
sizes collective algorithms for multi-node topologies utiliz-
ing bandwidth and latency probes. MSCCLang [17] provides
a domain-specific language describing the chunk-oriented
dataflow of collectives. Themis [54] dynamically assigns
unique pipeline schedules to data chunks in collectives to
maximize utilization of all network dimensions. Existing col-
lective optimization techniques utilize underlying physical
topology to adjust data segmentation, chunk routing, aggre-
gation hierarchy, etc., complementing DFCCL orthogonally.
GPU Preemption. Prior work in literature aims to support
preemption for GPU to lower the end-to-end latency of high-
priority tasks. Hardware solutions [36, 50, 60] enhance the
hardware to support preemption, managing context such
as registers, shared memory, barrier states, etc., during run-
time. Software methods [9, 22, 32, 33, 63, 68] can be applied
directly on commodity GPUs. Wait-based preemption ap-
proaches [9, 63, 68] modify user kernels to insert scheduling
points so that user kernels quit more frequently and expose
more scheduling chances. Lee et al. [32, 33] and REEF [22]
kill the preempted kernel directly to decrease scheduling de-
lay. Preempted idempotent kernels can be aborted and then
restarted without affecting correctness [22, 32], while pre-
empted non-idempotent kernels are rolled back and then re-
launched [32, 33]. DFCCL supports preemption without hard-
ware modification. Wait-based preemption still cannot pre-
vent deadlocks. Collectives are non-idempotent, and rolling
back collectives introduces considerable overheads and com-
plicated synchronization issues among GPUs. Existing GPU
preemptive scheduling methods are limited to single-GPU
kernels. DFCCL achieves decentralized dynamic preemption
and adaptive scheduling for collectives across multiple GPUs.

8 Conclusion
GPU collective deadlocks pose threats to distributed deep
learning. We present DFCCL, a novel GPU collective commu-
nication library that provides a comprehensive approach to
prevent GPU collective deadlocks by supporting preemption,
and maintaining high performance via adaptive scheduling.
Experimental results show that DFCCL effectively prevents
GPU collective deadlocks and achieves performance compa-
rable to or superior to NCCL. The code ofDFCCL and the sim-
ulator is publicly available at https://github.com/Oneflow-
Inc/dfccl.
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A Artifact Appendix
The artifact for the EuroSys 2025 paper, “Comprehensive
Deadlock Prevention for GPU Collective Communication”,
provides the code of DFCCL and the simulator mentioned in

Sec. 2.4. The DOI of the artifact is at https://doi.org/10.5281/
zenodo.14871978.
The code of DFCCL and the simulator is also publicly

available at https://github.com/Oneflow-Inc/dfccl.

https://doi.org/10.5281/zenodo.14871978
https://doi.org/10.5281/zenodo.14871978
https://github.com/Oneflow-Inc/dfccl
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