
Adaptive Resource Provisioning for the
Cloud Using Online Bin Packing

Weijia Song, Zhen Xiao, Senior Member, IEEE, Qi Chen, and Haipeng Luo

Abstract—Data center applications present significant opportunities for multiplexing server resources. Virtualization technologymakes it
easy to move running application across physical machines. In this paper, we present an approach that uses virtualization technology to
allocate data center resources dynamically based on application demands and support green computing by optimizing the number of
servers actively used. We abstract this as a variant of the relaxed on-line bin packing problem and develop a practical, efficient algorithm
that works well in a real system. We adjust the resources available to each VM both within and across physical servers. Extensive
simulation and experiment results demonstrate that our system achieves good performance compared to the existing work.

Index Terms—Cloud computing, virtualization, green computing

1 INTRODUCTION

AMAZON EC2 provides networked virtual machines (VM)
for lease. This model, named as Infrastructure as a

Service (IaaS), is broadly accepted in the industry. It is
estimated that the number of daily VM launches in the
“us-east-1” region has grown from 6,738 in year 2008 to
70,528 in year 2010 [1]. The total number of physical servers
is close to half a million in 2012 [2].

The load of applications encapsulated in the VMs may
change dynamically. The resource demands of applications
can be highly variable due to the time of the day effect, sudden
surge in user requests, and other reasons. Moreover, some
applications such as on-demand data processing and virtual
desktop have random load. It is hard to forecast their resource
demands. Although server consolidation has the effect of
absorbing load fluctuation, the sum of the peak resource
demand of VMs sharing a physical machine (PM) can be
much higher than the mean. Thus, it is often inefficient to
over-provision resources based on the peak demand because
doing so will leave the resources under-utilized most of
the time.

Live migration [3] allows a VM to be moved from one
server to another without interrupting the application run-
ning inside. This can be used to adjust the VM layout for load
balancing or energy saving purpose. For example, when the
resource utilization of a server becomes too high, some VMs
running on it can be migrated away to reduce its load. On the
contrary, when the average server utilization in the system
becomes too low, the VMs can be aggregated to a fraction of
the servers so that idle servers can be put to sleep to save

power. Previous work has shown that energy is a significant
part of the operational cost in data centers [4] and that it takes
a server only several seconds to sleep or to wake up [5], [6].
Novel hardware assisted servers can accomplish the transi-
tion between sleep and active states in negligiblemilliseconds
[7]. Compared with application layer solutions [4], [8], this
approach enjoys the simplicity of being application neutral.
However, live migration incurs overhead and may last some
period of time depending on the workload inside the VM and
the concurrent network traffic.

Various migration policies have been designed in the
literature [9]-[15]. In Sandpiper [9], a server whose resource
utilization is above some predefined thresholds is called a
“hot spot”. Its black box/gray box (BG) scheduling algorithm
periodically detects hot spots in the system anddecideswhich
VMs should bemigrated away to relieve the hot spots. It does
not consolidate VMs at valley load for green computing
purpose, since its main focus is overload avoidance. Nor does
VectorDot [11] perform green computing.

The resource allocation problem can bemodeled as the bin
packing problemwhere each server is a bin and eachVM is an
item to bepacked. The approachpresented in [10] periodically
performs an offline bin packing algorithm to calculate a new
VM layout, where hot spots are eliminated and the number of
servers in use is minimized. VMs are then migrated accord-
ingly. The new layout, however, may be quite different from
the existing one, which may incur a large number of VM
migrations. Wang et al. adopts an online bin packing algo-
rithm which incurs fewer migrations [12]. The focus of that
work is on the network bandwidth only anddoes not consider
multi-dimensional resource constraints.

In this paper, we present an approach that uses live
migration to allocate data center resources dynamically based
on application demands and supports green computing by
optimizing the number of servers used. We make the follow-
ing contributions:

We develop a practical bin packing resource allocation
algorithm. It is capable of both overload avoidance and
green computing. It is applicable to scenarios with multi-
dimensional resource constraints.

• W. Song, Z. Xiao, and Q. Chen are with the Department of Computer
Science, Peking University, Beijing 100871, China.
E-mail: {songweijia, xiaozhen}@pku.edu.cn, chenqi@net.pku.edu.cn.

• H. Luo is with the Department of Computer Science, Princeton University,
Princeton, NJ 08540. E-mail: haipengl@cs.princeton.edu.

Manuscript received 18 Oct. 2012; revised 04 July 2013; accepted 09 July 2013.
Date of publication 22 July 2013; date of current version 14 Oct. 2014.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.148

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014 2647

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

We give a theoretical proof that the number of servers in
use is bounded by , where is the number of
bottleneck resources.1 Especially, with only one bottle-
neck resource, the number of servers in use is bounded by
1.5 times of the optimal value. We also prove that the
number of VM migrations is bounded as well.
We conduct extensive simulation and experiments. The
results demonstrate good performance compared with
the existing work.

The rest of the paper is organized as follows. Section 2 gives
an overview of our approach. Section 3 describes our design,
bin packing with variable item size (VISBP) algorithm. Sec-
tions 4 and 5 present simulation and experiment results,
respectively. Related work is described in Section 6. Section 7
concludes.

2 OVERVIEW

Fig. 1 gives an overview of a typical virtualized data center
where our approach applies. The components of our
approach are marked with gray color. Each physical machine
(PM) runs a virtual machine monitor (VMM) like Xen [17],
KVM [18] or VMware [19]. Multiple virtual machines (VM)
share a PM.Applications such asWeb server, remote desktop,
DNS,Mail server, Map/Reduce, etc., run inside the VMs. The
VMM collects the usage statistics of resources on correspond-
ing PM such as CPU utilization, memory consumption, net-
work sends and receives, etc. These statistics are forwarded to
a centralized VM scheduler, the key component that is re-
sponsible for load balance and green computing by adjusting
the mapping of VMs to PMs.

The VMScheduler is invoked periodically and receives the
following inputs:

the resource demand history of VMs
the capacity and the load history of PMs
the current assignment of VMs to PMs

The VM Scheduler has two modules. The load predictor
estimates the resource demands in the near future. The sched-
uling algorithm optimizes VM layout so that the resource
demands are satisfied and resource waste is minimized.
Although the VM scheduler may seem to be a single point
of failure, it is not involved in the data path during normal
processing. In other words, its failure will cause the system to
stop adjusting the VM to PM layout in response to load
changes in the system, but the existing layout can continue
functioning normally. Should a higher degree of reliability be
needed, we can use the hot mirroring technology [16] or the
fast restart tehcnology [17].

The VM Scheduler is invoked periodically. In each round,
the load predictor estimates the resource demands of all
applications (VMs) and the load of all PMs based on past
statistics. The estimates are representedby the number ofCPU
ticks, the amount of memory, and the bandwidth of network
I/O. Based on the estimates, the scheduling algorithm checks
whether every PM has enough resources for the appointed
demands. If so, the VMM is able to adjust resource allocation

locally. Otherwise, the algorithm performs overload avoid-
ance by migrating away some of the VMs on the overloaded
PMs. The scheduling algorithm also consolidates VMs on the
under-utilized PMs so that some of the PMs become idle and
can be put into the standby mode to save energy. The output
of the scheduling algorithm is a VM migration list which is
then dispatched to the VMM on the involved PMs for execu-
tion. We assume that all PMs share a back-end storage.

Using livemigration as a tool for resource allocation seems
challenging at first glance. But this classical architecture is
broadly adopted in the literature [9], [11], [18], [10]. Clark et al.
also demonstrated that live migration incurs only negligible
overhead on applications [3]. We will show that it is practical
to use live migration in our system.

We use a variant of the exponentially weighted moving
average (EWMA) load predictor. The ESX Server uses tradi-
tional EWMA formula like the following:

where E(t) andO(t) are the estimated and the observed load at
time t, respectively. reflects a tradeoff between stability and
responsiveness. ESX computes three EWMA estimates with
different parameters and takes the maximum of them as a
conservative estimate on the VM’s memory needs. Although
seemingly satisfactory, it does not capture the rising trends of
resource usage. For example, when we see a sequence of

, 20, 30 and 40, it is reasonable to predict the next
value to be 50. Unfortunately, when is between 0 and 1, the
predicted value is always between the historic value and the
observed one. To reflect the “acceleration”, we take an inno-
vative approach by setting to a negative value. When

< , the above formula can be transformed into the
following:

On the other hand, when the observed resource usage is
going down, we want to be conservative in reducing our
estimate. Hence, we use two parameters, and , to
control how quickly E(t) adapts to changes when O(t) is
increasing anddecreasing, respectively.We call this the FUSD
(Fast Up and Slow Down) algorithm.

So far we take O(t) as the last observed value. Most
applications have their SLAs specified in terms of a certain

Fig. 1. Overview of the system architecture.

1. We consider the resources whose utilization are significantly high-
er than others as the bottleneck resources. For example, if most applica-
tions in a system are CPU-intensive, then the CPU resource is one of the
bottleneck resources.

2648 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

percentiles of requests meeting a specific performance level.
More generally, we keep a window of W recently observed
values and take O(t) as a high percentile of them. As we will
see later in the paper, the prediction algorithm plays an
important role in improving the stability and performance
of our resource allocation decisions.

3 RESOURCE ALLOCATION AS BIN PACKING

The classical bin packing problem consists of packing a series
of items with sizes in the interval (0, 1] into a minimum
number of bins with capacity one. We can model resource
allocation as the bin packing problem where each PM is a bin
and each VM is an item to be packed.We assume that all PMs
are homogeneous with unit capacity. We normalize the
resource demands of VMs to be a fraction of that capacity. For
example, if a VM requires 20% of the physical memory of the
underlying PM, then it corresponds to an item with size 0.2.

It is well-known that the problem is NP-hard. The quality
of a polynomial time approximation algorithm ismeasured
by its approximation ratio to the optimal algorithm

:

where is the list of the input sequence and and
are the number of bins used under the algorithm and the
optimal algorithm, respectively [19].

Although the bin packing problem has been studied exten-
sively in the literature, the existing solutions do notworkwell
indatacenter environments.Offlinealgorithmscanachievean
approximation ratiovery close toone [19]. This naturally leads
to an approach that periodically invokes an offline algorithm
to adjust theVM layout. The drawback of this approach is that
it may incur a large number of VMmovements when the load
of VMs changes dynamically because an offline algorithm by
its nature does not consider the existing VM layout when
packing the VMs into the set of PMs.

There are also online bin packing algorithms which pack
the current item without knowledge of subsequent items.
Strict online algorithms do not permit moving any previously
packed item and have a theoretical lower bound of 1.536 for
the approximation ratio [20]. This is overly restrictive in our
context since virtualization technology enables VM migra-
tions in real time. As we will see later, doing so allows us to
achieve a better approximation ratio even though we do not
attempt to pack the bins nearly as full.

Close to our work are the existing relaxed online algo-
rithms [21] which allow a constant number of movements of
already packed items in response to the arrival of a new item.
Unfortunately, those algorithms are not applicable to our
settings either, because they do not support the size changes
of already packed items. Note that the resource demands of
VMs can change over time (which motivated us to multiplex
data center resources in thefirst place), the sizes of items in our
bin packing problem are not fixed. One might think that we
can handle the size change of a previously packed item by
removing it from the bin and repack it, since item removal can
be supported by the delete operation in dynamic bin packing
algorithms [22]-[24]. Unfortunately, it is easy to construct

counterexamples where the correct strategy is to repack some
other items in that bin instead of the changed item. In other
words, when the resource demand of a VM changes, we may
decide to migrate some other VMs sharing the same PM
instead of migrating the changed VM. One solution is to
repack all items in the changed bin, but doing so causes too
many movements and defeats the purpose of an online algo-
rithm. Moreover, many existing algorithms work by main-
taining certain properties of the used bins (to keep them
sufficiently full in order to prove the approximation bound).
Removing an item (or reducing its size) can break those
properties, leading to the reshuffle of many other items
(including those from the unchanged bins). In short, the size
change of an item cannot be accommodated in the existing
algorithms easily.

In order to handle the changing resource demand of a VM,
we design a relaxed online bin packing algorithm called
Variable Item Size Bin Packing, or VISBP. It features carefully
constructed categories of items and bins. Moderate size
change can be absorbed as long as the category rules are kept.
It is important to realize that our design principle is different
in the face of the highly variable resource demands of data
center applications.While the classical binpacking algorithms
(online or not) consider packing a bin completely full a
success, in data center environments keeping servers running
at 100%utilization is detrimental to the stability of the system.
In the following, we first describe our algorithm in the one
dimensional case and then extend it to multi-dimensional.

3.1 One Dimensional VISBP
The key idea of VISBP is to trade the approximation ratio for
system stability. We divide items into four types according to
their sizes. We restrict the combinations of item types in a bin
to minimize the amount of space wasted.

insert(item): putting item into some bin
change(olditem, item): an already packed olditem has
become a new item (differ only in size)

The VISBP is relaxed online in that (1) no knowledge of the
future is assumedwhenhandling the current event; (2) a small
number ofmovements of already packed items are allowed. It
differs from the existing (relaxed) online algorithms in the
support of the change operation. The insert operation is
similar to [21]. In the following, we present an algorithmwith
an approximation ratio of 1.5 which limits the number of
movements for insert to atmost 3 and for change to atmost 7.
We start with some definitions.

3.2 Definitions

Definition 1.
Let b be a bin. gap(b) denotes the space available in bin b.
Let i be an item. size(i) denotes the size of the item (always

).
Let g be a group (see Definition 4 below). size(g) denotes the
size of the group, which is the total size of all items in that
group.
Let x be an item or a group. bin(x) denotes the bin it is in.

Definition 2. We divide items into several types based on their
sizes.
T-item (tiny): size
S-item (small): size

SONG ET AL.: ADAPTIVE RESOURCE PROVISIONING FOR THE CLOUD USING ONLINE BIN PACKING 2649

L-item (large): size
B-item (big): size
The above classification of items facilitates the construction of

a bin whose gap is less than 1/3 such as a bin with two T items or
one B-item. The VISBP algorithm tries to maintain this property
for all bins so that its approximation ratio is bounded.

Definition 3. We divide bins into several types based on their
content.
B-bin: has only one B-item.
L-bin: has only one L-item.
LT-bin: has only one L-item and a certain number of
T-items.
S-bin: has only one S-item.
SS-bin: has only two S-items.
LS-bin: has only one S-item and one L-item.
T-bin: has only a certain number of T-items. It is calledunfilled
if the available space is no less than 1/3. Otherwise, it is called
filled.

Definition 4. We group a certain number of T-items in the same
bin into a group. All T-items in a bin form several non-
overlapping groups such that: 1) the size of any group is no
more than 1/3, and 2) the size of any two groups is larger
than 1/3.

This grouping is convenient in that those tiny items in a
group can be considered as a whole and moved in a single step. It
is also reasonable since the overhead of VM migration depends
mostly on the size of its memory footprint (assume shared
network storage). Hence, migrating a large VM can have a
comparable overhead to the migration of several small ones.

Some notations: the item and bin types in the following are
examples only. Other types are interpreted in a similar way.

T-item: is a T-item.
: is an item in bin .

S-bin: is an S-bin.
: is a group in bin .
(S-item, b): is an S-item in bin b.

UT-bin: unfilled T-bin.
ULLT-bin: L-bin or LT-bin and the available space is no less
than 1/3 (i.e., gap).

3.3 Primitive Operations
Now we define the following primitive operations.

new(x): create a new bin, insert item or group x in it, and
return that bin.

move(x, b): move item or group into bin .

hot(b): check if the total size of all items in bin b is greater
than 1.

fillwith(x) where x is a T-item or group:

if b ULLT-bin

then move(x, b)

else if b UT-bin

then move(x, b)

else new(x)

fill(b) where b is a L-bin or LT-bin:

while gap(b) and t T-bin do

if ut UT-bin

then move(g, b), g ut

else move(g, b), g t

insert_S-item(x), x S-item:

if b S-bin

then move(item, b)

else new(item)

release(b) where b is a bin:

while g b do fillwith(g)

adjust(b), b LT-bin or L-bin:

while hot(b) do fillwith(g), g b

if gap(b) then fill(b);

The two statements above are mutually exclusive.

3.4 Algorithm
We are now ready to construct the insert and change opera-
tions. The two operations must keep the gap of most bins
within 1/3.

insert(item)

if item B-item then new(item);

if item L-item then ; fill(b);

if item S-item then ;

if item T-item then fillwith(item);

Nowwe describe the change operationwhich is the core of
our algorithm. We use to denote the types of the item
before and after the change as and , respectively. For
example, means the item changes from a B-item to an
S-item.Not all type changes requires adjustment.On the other
hand, adjustment may be needed even if the type does not
change. In the following, any condition “ -bin” does not
consider the bin where the change is happening.

change(olditem, item):

;

: fill(ob)

: if b S-bin then move(item, b);

: if b ULLT-bin then move(item, b)

else if b UT-bin then move(item, b)

: release(ob);

: adjust(ob);

2650 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

: release(ob);

if b S-bin then move(item, b);

: if T-bin

then while b UT-bin do

move(g, b), g ob

else while b ULLT-bin do

move(g, b), g ob

: if x (S-item, ob) then ;

: if x (S-item, ob) then ; fill(ob);

: if x (S-item, ob) and b S-bin then move(x, b);

if b ULLT-bin then move(item, b)

else if b UT-bin then move(item, b)

else if x (S-item, ob) then new(item)

: if x (L-item, ob) then fill(new(x)); release(ob);

: if x (L-item, ob) and x item then fill(new(x));

adjust(ob);

: if x (L-item, ob)

then insert_S-item(item); fill(bin(x));

else if b S-bin

then while b’ UT-bin and g ob do

move(g, b’);

move(item, b);

else release(ob);

: if L-item in ob

then adjust(ob);

else if hot(ob) then fillwith(item);

elsewhile gap(ob) and b UT-bindo

move(g, b), g b

3.5 Analysis of the Approximation Ratio
Recall the definition of the approximation ratio at the begin-
ning of the section. It is easy to prove the following Lemmas.

Lemma1. At any time, the algorithm can generate only six types of
bins: B-bin, L-bin, LT-bin, S-bin, SS-bin, and T-bin.

The LS-bin may appear under the optimal packing, but not
under our algorithm because we never put an L-item and an
S-item together. Note that the UT-bin and ULLT-bin mentioned
in the algorithm are only syntactic sugar.

Lemma 2. At any time, if there exists a T-bin, then there is no
L-bin, and the available space in any LT-bin is less than 1/3.

Lemma 3. At any time, there are at most one S-bin and at most one
unfilled T-bin.

Theorem 1. The approximation ratio .
We first prove that .We divide the proof into two

cases depending on whether there exists any T-bin.

Case 1
There exists a T-bin. From Lemma 2, we know there are only
B-bin, LT-bin, S-bin, SS-bin, and T-bin in the system, and the
available space in any LT-bin is less than 1/3. The available
space in B-bin, SS-bin, and all filled T-bin is less than 1/3 as
well. From Lemma 3, there are at most one S-bin and at most
one unfilled T-bin.We candisregard these two types of bins in
our analysis when OPT(L) approaches infinity.2 Hence,

, which means .

Case 2
There is no T-bin. In this case, if we discard all T-items, A(L)
does not change, and OPT(L) may become smaller or remain
the same. Hence, in the following we assume there is no
T-item. Again we disregard S-bin because there is at most
one. Under the optimal packing, there can be atmost one new
type of bins-LS-bin. We define

: the number of B-bins under the optimal and
our algorithms, respectively.

: the number of L-bins under the optimal and
our algorithms, respectively.

: the number of SS-bins under the optimal and
our algorithms, respectively.

: the number of LS-bins under the optimal algorithm.
It is easy to see3

So we have

Hence, .
Now we use a specific example to show that the bound is

tight. Suppose we have insert(item) requests where half of
the items to be inserted have the size and the other half
have the size . Then and .
Hence, .

Our approximation ratio is about 20% worse than the best
known relaxed online algorithm (which does not support the
change operation and incurs a very large number of move-
ments) because we do not pack the bins nearly as full [21].
It is better than the approximation ratio of strict online algo-
rithms [20].

2. In our algorithm, there will be at most one S-bin and one unfilled
T-bin. Denote the S-bin as and the unfilled T-bin as . We can get

< < . If < , we still need two bins
for items in and . Then we get >

> . Otherwise, when >
, we have > . This
can bewritten as < . Simply put, in the worst
case, our algorithm may use one more bin than .

3. A B-item can not coexists with an L-item and a S-item. The number
of B-bins is equal to the number of B-items, whichever algorithm is
adopted. That’s how we made . The other two equations
can be proved likewise.

SONG ET AL.: ADAPTIVE RESOURCE PROVISIONING FOR THE CLOUD USING ONLINE BIN PACKING 2651

One may wonder if a better approximation ratio can be
achieved with a even finer division of the item types. In
theory, this is possible as shown in the previous work [21].
In practice, however, doing so can incur a large number of
change operations since a small fluctuation of VM load may
change the type of the corresponding item. In a cloud com-
puting environment where the load of the VMs may change
dynamically, such practice can be detrimental to the perfor-
mance and the stability of the system.

3.6 Analysis on the Number of Movements
Recall that each movement can move either one item or one
group.

Lemma 4. From any given bin, we can move at most two groups
out of it into the same L-bin.

Proof. For any three groups , , and in the same bin, we
have

>

>

>

adding them together, we have

>

Since the available space in L-bin is less than 1/2, we
cannot move all three groups into it. ◽

Lemma 5. In any filled T-bin, there are at least three groups.

Proof. The size of a group is at most 1/3, and the available
space in a filled T-bin is less than 1/3. The conclusion
follows. ◽

Lemma 6. Let , , , and be four groups. and belong to
the same bin, and and belong to the same bin. Then it is not
possible to move all four of them into the same L-bin.

Proof. > > . The
available space in a L-bin is less than 2/3. The conclusion
follows. ◽

Lemma 7. There are at most five groups in a bin.

Proof. Assume for the sake of contradiction there are six
groups in a bin, . Then we have

>

>

>

adding them together, we have > , which exceeds
the capacity of the bin.

Theorem 2. The number of movements in the insert operation is at
most 3.

Proof. Only when the newly arrived item is an L-item do we
need to move already packed groups. From Lemmas 4, 5,
and 6, we know the worst case happens whenwe (1) move
two groups into an unfilled T-bin, andmove a group into a
filled T-bin, or (2) move a group into an unfilled T-bin, and
move two groups into a filled T-bin. In either case, the
number of movements is at most 3. ◽

Theorem 3. The number of movements in the change operation is
at most 7.

Proof. Based on the types of the item before and after the size
change, we list the number ofmovements in theworst case
inTable 1. The analysis is similar to theprevious theorem.◽

3.7 Time Complexity of VISBP
It is easy to see that each operation of VISBP can be completed
in time.Note that the best offline algorithmhas a time
complexity of . Hence, our time per opera-
tion is asymptotically the best.

3.8 Multi-Dimensional VISBP
We extend VISBP to multi-dimensional by breaking down
items according to their largest dimensions.More formally, let

be a d-dimensional bin packing algorithm with the fol-
lowing input and output.

Input: , where , and
, (and).

Output:
Positive integer : total number of bins used. The
bins are numbered from 1 to .

, where is the index of
the bin for item i ().

Let be a one-dimensional bin packing algorithm. Now
we extend it to a d-dimensional algorithm as follows:

For any input for , construct an
input for , where

. Let the output of be and . Then the
output of is: . It is easy to see that
this output is legitimate.

Theorem 4. , where and are the approximation
ratios of and , respectively.
We omit the proof here due to lack of space. Ourmethod is

very general in that it can transform any one dimensional
algorithm into the corresponding multi-dimensional version.
The worse case is when each item has a different bottleneck
dimension. For example, when , the items (1, 0, 0), (0, 1,
0), and (0, 0, 1) can be packed into a single bin under the
optimal algorithm, but need three bins under VISBP.

This ratio is rather unimpressive at a first glance. Some
algorithms in the literature can achieve a much better ratio
when is genuinely large. However, those algorithms cannot
be applied to our problem because they are either offline [25]
or do not support the change operation [26]. More important-
ly, there are not that many bottleneck dimensions in practice.
Most practical systems consider only two or three types of
resources in their allocation decision. A leading commercial
middleware product considers only CPU and memory when
allocating resources for a group ofWeb applications [8]. Other
types of resources are not critical to their performance (i.e.,
they are not the bottleneck dimensions). Sandpiper considers

TABLE 1
Number of Movements in Worst Case

2652 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

CPU,memory, and network resources for hot spot mitigation
but then combines them into a single “Volume”metric in their
VM migration decision [9]. Our own trace collection at our
university has also verified that the number of bottleneck
dimensions is small (see Section 4 fordetails).When or 3,
VISBP is within 11% or 22% of the best known (polynomial
time) online algorithm, respectively [26]. It is possible to
design a more complicated algorithm with a better approxi-
mation ratio when d is really large, but we have not found a
compelling reason to do so.

4 SIMULATION

4.1 Existing Algorithms for Comparison
In this section, we compare VISBP with three algorithms
using trace driven simulation: the Black-box and Gray-box
algorithm, the VectorDot algorithm, and the offline bin
packing algorithm.

The Black-box andGray-box algorithm [9] (denoted as BG)
combines utilization of CPU, memory, and network I/O
bandwidth into a single “volume” metric, which quantifies
the resource demands of a VM or the load of a PM. When
solving a hot spot, the BG algorithm tries to migrate away a
VM with the highest volume to memory size ratio to a PM
with the lowest volume. This maximizes the volume brought
away by each migrated byte.

In HARMONY [11], PMs are connected by data center
network to a central storagemanagement device.When a PM
or a switch in the data center network becomes a hot spot, the
VM that contributes the most to the hot spot is moved
elsewhere. VectorDot introduces an “EVP” metric, which is
calculated by the dot product of the utilization vector of a VM
and that of a PM hot spot, to quantify the contribution of the
VM to the hot spot. It also helps decide the migration desti-
nation. This simulation does not involve data scheduling.

For the offline bin packing algorithm [10] (denoted as
offline-BP), during each scheduling interval, all VMs are
sorted by the resource demand in descending order. The
First-Fit heuristic is then used to calculate an approximate
solution.

4.2 Design of the Simulator
We evaluate the effectiveness of VISBP using trace driven
simulation. We use the framework from an open source
cloudmanagement software calledUsher [27].Our simulation
uses the same code base for the algorithm as the real imple-
mentation inUsher. This ensures thefidelity of our simulation
results. The simulator is implemented in fewer than 4000 lines
ofPythoncode. It runs inaLinuxboxovera rack-mount server
with two Intel E5520 CPUs and 32 Gigabytes of Memory.

We have collected traces from a variety of servers in our
university including our faculty mail server, the central DNS
server, the syslog server of our IT department (which pro-
cesses logs collected from all major gateways on campus), the
index server of our P2P storage system, andmany others. We
have also collected desktop traces in our department using
tools like “perfmon” (Windows), the “/proc” file system
(Linux), “pmstat/vmstat/netstat” commands (Solaris), etc.
Wepost-processe the traces based on days collected intomore
than 500 datasets. We use random sampling and linear
combination of the datasets to generate the VM traces.

Before the VM traces are fed to the scheduling algorithms,
they are all filtered by our FUSD load prediction algorithm
with , , and . We later discuss the
choice of the parameters in Section 4.6. The ratio of
the number of VMs to PMs are kept at 20:1 thoughout the
simulation.

4.3 Green Computing
We simulate a systemwith 60 PMs and 1200VMs. The bottom
part of Fig. 2 shows the daily load variation in the system. The
x-axis is the time of the day starting at 8am.We call a PM active
if it has at least one VM running. Otherwise, it can potentially
be put to sleep. The two y-axes are the percentage of the load
(right) or the number ofActive PMs in the system (left). As can
be seen from the figure, the CPU load demonstrates a diurnal
pattern which decreases substantially after midnight. The
memory consumption is fairly stable over the time. The
network utilization stays very low and has no impact on our
scheduling decision. This confirms our early observation that
most practical systems have only a small number of bottle-
neck resources.We consider only the CPU and thememory in
our simulation.

The top part of Fig. 2 compares how the percentage of
APMs (Active PMs) changes along with the workload. It
indicates that bin packing based algorithms use much fewer
APMs than the other two algorithms. Recall that both the BG
and the VectorDot algorithms have no support for green
computing. Hence, they quickly use up all PMs and never
release them. In other words, once the VMs are spread out
during high load, they are never consolidated when the load
goes down. In contrast, the resource usage of the two bin
packing algorithms closely mimic the variation of the load in
the system, indicating good green computing effect. The
figure also shows that our algorithm uses more APMs than
the offline algorithm. This is investigated in more details in
Fig. 3 where we compare the average number of APMs in the
two algorithms when the scale of the system increases.

In Fig. 3 we compare the average numbers of APMs in
offline bin packing and our online version of the algorithm.
We found that our algorithm uses about 27% more PMs than
the offline algorithm. This percentage is independent of the
scale and the number of resource dimensions. As we will see
in Section 4.5, offline bin packing algorithms incur too many

Fig. 2. Active PMs with the daily load variation.

SONG ET AL.: ADAPTIVE RESOURCE PROVISIONING FOR THE CLOUD USING ONLINE BIN PACKING 2653

VM migrations and are not suitable in a cloud computing
environment.

4.4 Load Balance
We use the Gini coefficient [28] to measure the distribution of
resource utilizations across APMs. Gini coefficient is widely
used to measure the distribution of wealth in society. It is
calculated from the normalized area between the observed
CDF and the CDF of an uniform distribution. A smaller
coefficient indicates a more equal distribution. Fig. 4 shows
the CDF of Gini coefficient for the CPU and the memory
resources.As canbe seen from thefigure, our online algorithm
maintains an even load distribution similar to the offline
version, and much better than the BG and the VectorDot
algorithms.

4.5 Scalability
Weevaluate the scalability of the algorithms by increasing the
number of VMs in the simulation from 200 to 1600 while
keeping the VM to PM ratio fixed at 20:1 as said before. Fig. 5a
shows that, for all four algorithms, the average number of
APMs increases linearly with the system size. Our VISBP
algorithm uses about 73% of total PMs, much fewer than 98%
of the BG algorithm and 99% of the VectorDot algorithm. This
demonstrates that our VISBP algorithm achieves good green
computing effect. Although the offline BP algorithmuses 19%
fewer PMs than ours, as shown later in this section, it incurs
too many migrations to be practical.

Fig. 5b shows that the average decision time of all algo-
rithms increase roughly linearly with the system size.
Although the VISBP algorithm seems slower than the BG
and the VectorDot algorithms, the decision time is a trifle
comparedwith the scheduling interval.When the size reaches
1600, the average decision time is still under 0.02 seconds
per scheduling run.

Fig. 5c compares the average number of hot spots in the
system. Recall that a PM is considered a hot spot when its
utilization is above a predefined hot threshold. Here we use a
90% hot threshold. The numbers of hot spots for all four
algorithms increase roughly linearly with the system size.
With the VISBP algorithm, the average possibility of being a
hot spot for a PM in each decision interval is . It
outperforms the other three algorithms. The VISBP algorithm

uses only unfilled or unused bins to receive an item even
though some closed bins might have enough space for that
item. This featuremakes it likely that the bins have some spare
space for absorbing fluctuation of item sizes. The offline bin
packing algorithm does not enjoy this feature. Although the
VectorDot and the BG algorithms try best to scatter the VMs,
they are driven by the shortage of resource. In contrast, the
VISBP algorithm adjusts the VM layout in advance.

We define a cold spot as a PM whose utilization of all
resources is under 25%4. The number of cold spots represents
the extent of resource waste. Fig. 5d shows that the VISBP
incurs much fewer cold spots than the BG and the VectorDot
algorithms.

We also calculate the total number ofmigrations at varying
scale. As shown in Figs. 5e and f, for all algorithms, the
number of migrations increases roughly linearly with the
system size. In our VISBP algorithm, each VM on average
experiences migrations during each decision run,
independent of the system size. This translates into roughly
onemigration per thousanddecision intervals. The stability of
our algorithm is good enough. Fig. 5f shows that the number
of migrations of offline-BP algorithm is much more than that
of ours. With the scale of 1600 VMs, a VM experiences one
migration every three decision intervals by the offline-BP
algorithm, and a PM experiences seven migrations every
decision interval. This incurs high network overhead and is
hard to finish in each decision interval.

4.6 Determine the � Parameters for Load Predictor
For both and , we have tested 21 values from – 1.0 to

with step length by simulation. All 441 combinations
are tested in a systemwith 1000VMsand50PMs to study their
effects on the performance of VISBP.We find that when is
in and in [0,0.9], thenumber of hot spots is fewer
than 0.0007 per decision run. Once grows above 0.8, the
number of hot spots grows rapidly above 0.0035 per decision
run. This is because the predictor fails to identify the rising
resource demand and leads to under-provision. A similar
situation occurs with negative .

Fig. 3. APM comparison of offline-BP and VISBP. Fig. 4. Gini index of CPU and memory.

4. It has been shown in the literature that the average resource
utilization of typical data centers is between 20% and 30% [7]. So we use
25% (the middle of 20% and 30%) utilization as threshold for under-
utilized servers.

2654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

The number ofmigrations growswhenboth values drop.
If both values drop in to , the number of migra-
tions grows nearly linearly from 0.77 to 0.87 per decision run.
The number ofmigrations grows radicallywith values drop
below . Since the negative magnifies the fluctuation of
load, the algorithm increases the number of migration to
accommodate the change of resource demands. If values
increase over 0.8, load fluctuation is smoothed so that the

number of migration decreases. However, this can lead to
under-provisioning if the load increases really fast.

The number of cold spots and the number of APMs
grow slowly and linearly when increases or declines.
Larger prevents the predicted load from dropping too
fast while lower makes it increase faster. This leads to
more resource reservation tomitigate potential hot spots. The
result showes that, with and , the

Fig. 5. Scalability of the algorithms with system size.

SONG ET AL.: ADAPTIVE RESOURCE PROVISIONING FOR THE CLOUD USING ONLINE BIN PACKING 2655

algorithm uses only one more APM than the case without the
predictor.

Since the two values work well in a wide range, we have
adopted and in both the simulation and
the experiments, which are around the center in that range.

5 EXPERIMENTS

The experiments are conducted using a group of servers that
run the Xen hypervisor. The servers are connected to a shared
NFS storage server providing storage for VM images. Our
algorithm is implemented as an Usher plug-in.

5.1 Local Resource Adjustment
Our first experiment demonstrates the effectiveness of local
resource adjustment. We run three VMs on a server. The
server has one Intel E5420 core and eight gigabyte of RAM.
An Apache web server runs in each VM. We use httperf to
invoke CPU intensive PHP scripts on Apache servers. The
total CPU load of the three VMs is kept constant at 80%, but
the load of each VM varies with time. The default credit
scheduler in Xen is used. Fig. 6 shows that local resource
adjustment can adapt to the changing demand well.

5.2 One Dimensional Resource Experiment
Now we evaluate the effectiveness of the VISBP algorithm in
overload mitigation and green computing. We use three
physical servers (PMs) and five VMs in this experiment. The
configuration of the PMs conforms to the one used in Sec-
tion 5.1. All VMs are configuredwith 128MB of RAM and are
on PM3 initially. Fig. 7 shows the VISBP algorithm in action
with the changing load. Different shades are used for each
VM. We first increase the CPU load of the VMs gradually to
create an overload on PM3. The figure shows that the VISBP
algorithm starts a series of migrations to offload PM3, first to
PM1, and then toPM2. It reaches a stable state under high load
around 1250 seconds. Then we decrease the CPU load of all
VMs gradually. Now green computing takes effect. Around
1600 seconds, two VMs were migrated from PM3 to PM2 so
that PM3 can be put into the standbymode. Around 1800 sec-
onds, a VM is migrated away so that PM1 can be released. As
the load goes up and down, the VISBP algorithm will repeat
the above process: spread over or consolidate the VMs as
needed.

5.3 Multi-Dimensional Experiments
Now we see how the VISBP algorithm handles a mix of CPU
and network intensive workloads. We vary the CPU load as
before.We inject the network loadby sending theVMsa series
of network packets. The results are shown in Fig. 8.We reduce
the number of PMs to two so that they can fit into the figure
easily. The two rows represent the two PMs. The two columns
represent the CPU and the network dimensions, respectively.
The first part of the figure is similar to the previous one. Then
starting at time 2000 seconds, we increase the network load of
VM1 and VM2 from 20% to almost 50%. This causes VM3,
VM4, and VM5 to move to PM1. Note that VM1 and VM2 are
not migrated. PM1 and PM2 correspond to the SS-bin and the
T-bin in our bin packing algorithm, respectively. The subse-
quent increase in CPU load does not break the properties of
these twobins. From4000 seconds, theCPUandnetwork load
of all VMs decline, which eventually makes all VMs T-items.
Around 4400 seconds, VM1 and VM2 are migrated to PM1 so
that PM2 is released. This experiment demonstrates that the
VISBP algorithm works equally well for multi-dimensional
resources.

5.4 Comparison of Algorithms
Wesetupaprototypedata center environment to compareour
algorithm along with the others. We use 10 servers as com-
puting nodes to run 80 virtual machines. The scheduler runs
on a dedicatedmanagement server. TwoNFS servers provide
a centralized storage for VM images. Each server reserves 10
gigabytes ofmemory and fourCPUcores forVMs. EachVM is
configuredwith two gigabyte initial memory and one Virtual
CPU. We disable the Hyper-Threading function so that each
running virtual CPU can get a full core. Self-ballooning is
enabled inside each VM to reclaim unused memory.

We use the TPC-W [29] benchmark to simulate real world
workload. The TPC-W benchmark is composed of the server
side and the client side. The server side implements a web
application of an online bookstore. The client side imitates the
browsing and the buying behaviors of the customers. In our
experiment, Each VM runs a copy of the server side. To
simulate rising and declining of the load, we prepare six
consecutive waves of hybrid workload including both the
browsing and the ordering behaviors at different throughput
levels.

Fig. 6. Local resource adjustment.

Fig. 7. One dimensional resource experiment.

2656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

The initial layout of the 80 VMs is fixed. Four of the servers
run 15 VMs each, another four run seven, six, four, and three
VMs respectively. The other two servers are idle. The sched-
uling algorithm is invoked every ten minutes. The predictor
parameters conform to those used in the simulation. Work-
load is started synchronically by a script.

Fig. 9 shows the scheduling process of the VISBP algo-
rithm. The first figure shows the workload fed to each VM.
The number of request per second (RPS) rises gradually to 15;
then it drops down step by step. In the second figure, we see
that VISBP consolidates the VMs to five servers in the thir-
teenth scheduling interval (or 130minutes).Half of the servers
are idle. They can be put to standby mode to save power and
wakenup ondemandby technologies such asWake-on-LAN.
After the load passes, the VISBP algorithm again consolidates
VMs distributed on ten servers to seven servers. It uses two
more servers than the previous consolidation process because
the operating systems in the VMs use more memory to cache
dataduring theworkload. In contrast, as shown in the last two
figures in Fig. 9, the BG and the VectorDot algorithms do not
consolidate VMs. As a result, they generate many under-
utilized servers.

Wehave also observed that theVISBP algorithmusesmore
migrations than the BG and the VectorDot algorithms. It on
average incurs 1.03 migrations in each scheduling interval.

The maximum number of migrations it has in a single sched-
uling round is 5. Even in this worst case, all migrations can be
completed in less than 90 seconds. As shown in the simula-
tion, migration tends to be much less frequent in the real
environment because real workload is generally more stable
than our synthetic workload.

Prudent readers may find from Fig. 9 that the resource
utilization of idle VMs is not low. An idle VM can use about
3% of the resource capacity of a server. This is because about
300megabytes ofmemory is consumedonce the application is
started. However, the demand on memory does not increase
much when the workload increases to peak load. In contrast,
the CPU usage grows linearly to 8% of server capacity and
become the bottleneck resource, leaving space for about 12
VMs per host.

Interestingly, throughout this experiment, none of the
algorithms let the resource utilization of a server rising
above 90%. This demonstrates the effectiveness of our load
predictor.

We also conduct this experiment using the offline bin
packing algorithm, but it requests so many migrations that
the Xen hypervisors in some servers stop responding. It
cannot finish a complete procedure even though we have
tried many times.

6 RELATED WORK

6.1 Resource Allocation
The problem of adaptive resource allocation in the cloud
environment has been investigated in the literature. To
achieve application level quality of service (QoS), Padala
[30], [31] models application performance as a linear function
of allocations of CPU time and disk I/O so that the resource
allocator on each physical server can smartly adjust the
allocation to get expected performance. In Seawall [32], a
centralized controller forecasts congestion in data center
network from traffic among application components. It care-
fully throttles thenetwork I/Oof involvedvirtualmachines to
optimize network resource utilization. The above approaches
focus on fairness in resource allocation across the applica-
tions. Our work, in contrast, focuses on hot spot avoidance
and green computing.

MSRP replicates web applications to meet their resource
requirement [4]. It allows web applications to bid for server
resources. A resource allocation algorithm decides which
applications are served to maximize profit by minimizing the
number of profitable active servers. Hot spots are avoided

Fig. 8. Multi-dimensional resource experiment.

Fig. 9. Comparison of algorithms.

SONG ET AL.: ADAPTIVE RESOURCE PROVISIONING FOR THE CLOUD USING ONLINE BIN PACKING 2657

since the algorithm prohibits over-commitment. However,
this algorithm assumes that the memory footprint of applica-
tions is small enough that a single server can host all applica-
tionsinadatacenter,whichisnomoreapplicablenowadays.In
modern systems,memory is treated as the bottleneck resource
[8], [33].Aservercanonlyhostalimitednumberofapplications
and the replacement of applications is an expensive operation.
Assuch,theyhaveastrongmotivationtominimizeapplication
placement changes. In our previous work, we use a CCBP
model toprovide automatic scaling forwebapplications in the
cloud environment. It aims at good demand satisfaction ratio,
minimalreplacement,andpowerconsumption.Thesesystems
do not use virtualization and apply only to specific applica-
tions. In contrast, we treat eachVMas a black box andhave no
knowledge of encapsulated applications.

MapReduce [34] is also a popular framework that supports
the resource allocation in the cluster. However, it often runs in
higher level than our system. A lot of research has run
MapReduce as an application in the cloud, e.g. Amazon EC2
andMCP [35]. Therefore, ourVISBPapproach can still beused
to adjust the resource allocation effectively in these cases.

Similar to our work, Sandpiper [9] and HARMONY [11]
exploit live migration to offload hot spots. However, they do
not support greencomputing. Someapproach invokes classical
offline bin packing algorithmperiodically to optimize resource
allocation [10]. Although the offline algorithm does well in
green computing, the number of migrations it incurs is practi-
cally prohibitive. Interestingly, Rahman et al. tries to prevent
unnecessary migration by solving contention locally [36].

6.2 Green Computing
There are many approaches to green computing in data
centers. One category leverages hardware technologies to
improve power efficiency of each server. Another adopts low
power agencies to minimize idle power consumption.

Close to our approach, a bunch of resource scheduling
systems try tominimize the number of active physical servers
[4], [10], [37]. Idle servers may be put into sleep state or even
shutdown to save power. This approach is known as server
consolidation. As shown in VirtualPower, server consolida-
tion accounts for the majority of power saving effect [18].
In addition, this approach does not rely on any special
hardware or specific settings like Sleep Server [6]. VMAP
incorporates the idea that resource utilization of servers in
better cooled areas of a data center can be higher than that of
the others for better power efficiency [38]. This idea can be
adopted in our future work.

6.3 Bin Packing Algorithms
In approach given in [10], the schedulor periodically invokes
offline bin packing algorithm to calculate the mapping from
VMs to PMs. Stillman uses bin packing algorithm in a job
system to optimize the job execution time [39]. Wang et al.
incorporate probability analysis into the classical offline First-
Fit bin packing algorithm as a tool for network resource
allocation in data centers [12]. The above approaches all adopt
offline bin packing algorithms. Balogh and Bëkesi investigate
various online bin packing algorithms and proves a new
lower bound on the approximation ratio [40]. Our algorithm
is derived from Gambosi’s algorithm to take advantage of its
control over adjustment cost [21].

Theoretical analysis on the average performance of our
online bin packing algorithm is a complicated task depending
on the probability distribution of the item sizes (i.e., the VM
load). Existing work has some intriguing results for the
uniform distribution. They use the average waste space,
the aggregate unused space in open bins, as an indicator for
the average performance of a bin packing algorithm. For
example, analysis has shown that, for one-dimensional
first-fit decreasing (FFD) bin packing algorithm5, the waste
space is if item size conforms to uniform distribution
over , where is the number of items to be packed [41]
[42]. If item size conforms to uniform distribution over ,
where < < , the wasted space is for and

for < < [43]. Karp et al. also conduct analysis on
VPACK, a special vector bin packing algorithm where the
size in each dimension of an item is independent and
conforms to an uniform distribution over [44].

7 CONCLUSION

We have presented the design, implementation, and evalua-
tion of a practical online bin packing algorithm called the
VISBP which can allocate data center resources dynamically
through live VM migration. Compared to the existing algo-
rithm, the VISBP excels in hot spots mitigation and load
balance. It also reconciles the demands on both green com-
puting and stability.

In the future, we plan to incorporate application perfor-
mancemodel and allocating resource according to service level
agreement. In addition, we plan to leverage the memory simi-
larity among virtual machines with memory de-duplication
technologies to improve the ratio of VM to PM as well as the
performance of live migration.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (GrantNo. 61170056), theNationalHigh
Technology Research and Development Program (863 Pro-
gram) of China (Grant No. 2013AA013203), National Basic
Research Program of China (Grant No. 2009CB320505) and
Digital Resource Security Protection Service Based onTrusted
Identity Federation and Cloud Computation SubProject of
2011 Information Security Special Project sponsored by
National Development and Reform Commission. The contact
author is Zhen Xiao.

REFERENCES

[1] G. Rosen, Recounting ec2 One Year Later, http://www.jackofall
clouds.com/2010/12/recounting-ec2/, Dec. 2010, accessed Aug.
10, 2012.

[2] HuanLiu,AmazonDataCenter Size, http://huanliu.wordpress.com/
2012/03/13/amazon-data-center-size/, Mar. 2012, accessed Aug.
10, 2012.

[3] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” Proc. 2nd
Symp. Networked Systems Design and Implementation (NSDI’05), pp.
273–286, 2005.

5. Offline-BP degrades to FFD when only one resource dimension is
considered.

2658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

[4] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and R.P.
Doyle, “Managing Energy and Server Resources in Hosting Cen-
ters,” Proc. 18th ACM Symp. Operating System Principles (SOSP’01),
pp. 103–116, 2001.

[5] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta,
“Somniloquy: Augmenting Network Interfaces to Reduce PC Ener-
gy Usage,” Proc. 6th USENIX Symp. Networked Systems Design and
Implementation (NSDI’09), pp. 365–380, 2009.

[6] Y.Agarwal, S. Savage, andR.Gupta, “Sleepserver:A Software-Only
Approach for Reducing the Energy Consumption of PCs within
Enterprise Environments,” Proc. USENIX Conf. USENIX Ann.
Technical Conf., p. 22, 2010.

[7] D. Meisner, B.T. Gold, and T.F. Wenisch, “Powernap: Eliminating
Server Idle Power,” Proc. 14th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS’09), pp.
205–216, 2009.

[8] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A Scalable
Application Placement Controller for Enterprise Data Centers,”
Proc. 16th Int’l World Wide Web Conf. (WWW’07), pp. 331–340, 2007.

[9] T.Wood,P. Shenoy,A.Venkataramani, andM.Yousif,“Black-Boxand
Gray-Box Strategies for Virtual Machine Migration,” Proc. 4th Symp.
Networked Systems Design and Implementation (NSDI’07), p. 17, 2007.

[10] N. Bobroff, A. Kochut, andK. Beaty, “Dynamic Placement of Virtual
Machines for Managing SLA Violations,” Proc. 10th IFIP/IEEE Int’l
Symp. Integrated Network Management (IM’07), pp. 119–128, 2007.

[11] A. Singh, M. Korupolu, and D. Mohapatra, “Server-Storage Virtua-
lization: Integration andLoad Balancing inData Centers,” Proc. 20th
ACM/IEEE Conf. Supercomputing (SC’08), p. 53, 2008.

[12] M.Wang, X. Meng, and L. Zhang, “Consolidating Virtual Machines
withDynamicBandwidthDemand inDataCenters,”Proc. 30th IEEE
Int’l Conf. Computer Comm. (INFOCOM’11), pp. 71–75, 2011.

[13] H. Xu and B. Li, “Egalitarian Stable Matching for VM Migration in
Cloud Computing,” Proc. IEEE Conf. Computer Comm. Workshops
(INFOCOM WKSHPS), pp. 631–636, 2011.

[14] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“NoPowerStruggles:CoordinatedMulti-Level PowerManagement
for the Data Center,” Proc. 13th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 48–59, 2008.

[15] S.-H. Lim, S.-J. Huh, Y. Kim, and C.R. Das, “Migration, Assignment,
and Scheduling of Jobs in Virtualized Environment,” Proc. 3rd
USENIX Workshop Hot Topics in Cloud Computing, p. 45, 2011.

[16] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the Performance of
Virtual Machine Synchronization for Fault Tolerance,” IEEE Trans.
Computers, vol. 60, no. 12, pp. 1718–1729, Dec. 2011.

[17] J. Zhu,Z. Jiang, andZ. Xiao, “Twinkle:AFast Resource Provisioning
Mechanism for Internet Services,” Proc. IEEE Infocom, Apr. 2011, pp.
802–810.

[18] R. Nathuji and K. Schwan, “Virtualpower: Coordinated PowerMan-
agement in Virtualized Enterprise Systems,” Proc. 21st ACMSIGOPS
Symp. Operating Systems Principles (SOSP’07), pp. 265–278, 2007.

[19] M.R. Garey and D.S. Johnson, “A 71/60 Theorem for Bin Packing,”
J. Complexity, vol. 1, pp. 65–106, 1985.

[20] C.C. Lee and D.T. Lee, “A Simple On-Line Bin-Packing Algorithm,”
J. ACM (JACM), vol. 32, no. 3, pp. 562–572, 1985.

[21] G. Gambosi, A. Postiglione, and M. Talamo, “Algorithms for the
Relaxed Online Bin-Packing Model,” SIAM J. Computing, vol. 30,
no. 5, pp. 1532–1551, 2000.

[22] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, “Dynamic Bin
Packing,” SIAM J. Computing, vol. 12, pp. 227–258, 1983.

[23] J.W.-T. Chan, T.-W. Lam, and P.W.Wong, “Dynamic Bin Packing of
Unit Fractions Items,” Theoretical Computer Science, vol. 409, pp. 521–
529, 2008.

[24] L. Epstein andM.Levy, “DynamicMulti-Dimensional BinPacking,”
J. Discrete Algorithms, vol. 8, pp. 356–372, 2010.

[25] C. Chekuri and S. Khanna, “On Multi-Dimensional Packing Pro-
blems,” Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 185–194,
1999.

[26] G. Galambos and G.J. Woeginger, “On-Line Bin Packing—A
Restricted Survey,” Physica Verlag, vol. 42, no. 1, pp. 25–45, 1995.

[27] M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker, “Usher: An
Extensible Framework forManaging Clusters of VirtualMachines,”
Proc. 21st Large Installation SystemAdministration Conf. (LISA’07), pp.
1–15, 2007.

[28] S. Yitzhaki, “Relative Deprivation and the Gini Coefficient,” Quar-
terly J. Economics, vol. 93, pp. 321–324, May 1979.

[29] TPC-W: Transaction Processing PerformanceCouncil, http://www.
tpc.org/tpcw/, 2002.

[30] P. Padala, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive Control of Virtualized Re-
sources in Utility Computing Environments,” Proc. 2nd ACM SI-
GOPS/EuroSys European Conf. Computer Systems, pp. 289–302, 2007.

[31] P. Padala, K.-Y. Hou, K.G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant, “Automated Control of Multiple
Virtualized Resources,” Proc. 4th ACM European Conf. Computer
Systems (EuroSys’09), pp. 13–26, 2009.

[32] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: Perfor-
mance Isolation forCloudDatacenterNetworks,”Proc. 2ndUSENIX
Conf. Hot Topics in Cloud Computing, p. 1, 2010.

[33] Z. Xiao, Q. Chen, and H. Luo, “Automatic Scaling of Internet
Applications for Cloud Computing Services,” IEEE Trans. Compu-
ters, Nov. 2012, preprint, doi: https:doi.ieeecomputersociety.org/
10.1109.TC.2012.284.

[34] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing
on Large Clusters,” Comm. ACM, vol. 51, pp. 107–113, 2008.

[35] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce Performance
Using Smart Speculative Execution Strategy,” IEEE Trans. Compu-
ters, Jan. 2013, preprint, doi: https://doi.ieeecomputersociety.org/
10.1109/TC.2013.15.

[36] M.M. Rahman, R. Thulasiram, and P. Graham, “Differential Time-
SharedVirtualMachineMultiplexing forHandlingQoSVariation in
Clouds,” Proc. 1st ACM Multimedia Int’l Workshop Cloud-Based Mul-
timedia Applications and Services for e-Health, pp. 3–8, 2012.

[37] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-Aware Server Provisioning and Load Dispatching for Con-
nection-Intensive Internet Services,” Proc. 5th USENIX Symp. Net-
workedSystemsDesignand Implementation (NSDI’08), pp. 337–350, 2008.

[38] E.K. Lee, H. Viswanathan, and D. Pompili, “Vmap: Proactive
Thermal-AwareVirtualMachineAllocation inHPCCloudDatacen-
ters,” Proc. IEEE Conf. High-Performance Computing (HiPC’12), 2012.

[39] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova,
“Resource Allocation Using Virtual Clusters,” Proc. 9th IEEE/ACM
Int’l Symp. Cluster Computing and the Grid (CCGrid’09), 2009.

[40] J. Balogh and J. Békési, “Semi-On-Line Bin Packing: A Short Over-
view and a New Lower Bound,” Central European J. Operations
Research, vol. 21, no. 4, pp. 685–698, 2012, Springer.

[41] W. Knödel, “A Bin Packing Algorithm with Complexity o(n log n)
andPerformance1 in the StochasticLimit,”Proc.Math. Foundations of
Computer Science, pp. 369–378, 1981.

[42] R. Loulou, “Probabilistic Behaviour of Optical Bin-Packing Solu-
tions,” Operations Research Letters, vol. 3, no. 3, pp. 129–135, 1984.

[43] J.L. Bentley, D.S. Johnson, F.T. Leighton, C.C. McGeoch, and L.A.
McGeoch, “Some Unexpected Expected Behavior Results for Bin
Packing,” Proc. 16th Ann. ACM Symp. Theory of computing, pp. 279–
288, 1984.

[44] R.M. Karp,M. Luby, andA.Marchetti-Spaccamela, “AProbabilistic
Analysis of Multidimensional Bin Packing Problems,” Proc. 16th
Ann. ACM Symp. Theory of Computing, pp. 289–298, 1984.

WeijiaSong received thebachelor’sandmaster’s
degrees from Beijing Institute of Technology,
China. He is currently a doctoral student at Peking
University, Beijing, China. His current research
focuseson resource schedulingproblems in cloud
systems.

Zhen Xiao received the PhD degree from Cornell
University, New York in January 2001. He is a
professor with the Department of Computer Sci-
ence at Peking University, Beijing, China. After
receiving the PhD degree he worked as a senior
technical staff member at AT&T Labs, New
Jersey, and then as a research staff member at
IBM T.J. Watson Research Center, 17 Skyline
Dr, Hawthorne, NY 10532, USA. His research
interests include cloud computing, virtualization,
and various distributed systems issues. He is a

senior member of ACM and IEEE.

SONG ET AL.: ADAPTIVE RESOURCE PROVISIONING FOR THE CLOUD USING ONLINE BIN PACKING 2659

Qi Chen received the bachelor’s degree from
Peking University, Beijing, China in 2010, where
she is currently a doctoral student. Her current
research focuses on cloud computing and parallel
computing.

Haipeng Luo received the bachelor’s degree
from Peking University, Beijing, China in 2011.
He is currently a doctoral student at Princeton
University, New Jersey. His current research
focuses on machine learning.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 11, NOVEMBER 2014

